Skip to main content

Advertisement

Log in

Effects of a Coumarin Derivative, 4-Methylumbelliferone, on Seed Germination and Seedling Establishment in Arabidopsis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The root system is central for plant adaptation to soil heterogeneity and is organized primarily by root branching. To search for compounds that regulate root branching, a forward chemical genetics screen was employed, and 4-methylumbelliferone (4-MU), a coumarin derivative, was found to be a potent regulator of lateral root formation. Exogenous application of 4-MU to Arabidopsis thaliana seeds affected germination and led to reduced primary root growth, the formation of bulbous root hairs, and irregular detached root caps accompanied by reorganization of the actin cytoskeleton in root tips before seedling establishment. Abundant lateral roots formed after exposure to 125 μM 4-MU for 22 days. Molecular, biochemical, and phytochemical approaches were used to determine the effect of 4-MU on root growth and root branching. Arabidopsis seedlings grown in the presence of 4-MU accumulated this compound only in roots, where it was partially transformed by UDP-glycosyltransferases (UGTs) into 4-methylumbelliferyl-β-D-glucoside (4-MU-Glc). The presence of 4-MU-Glc in seedling roots was consistent with the upregulation of several genes that encode UGTs in the roots. This shows that UGTs play an integral role in the detoxification of 4-MU in plants. The increased expression of two auxin efflux facilitator genes (PIN2 and PIN3) in response to 4-MU and the lack of response of the auxin receptor TIR1 and the key auxin biosynthetic gene YUCCA1 suggest that auxin redistribution, rather than auxin biosynthesis, may directly or indirectly mediate 4-MU-induced root branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abenavoli, M. R., de Santis, C., Sidari, M., Sorgona, A., Badiani, M., and Cacco, G. 2001. Influence of coumarin on the net nitrate uptake in durum wheat. New Phytol. 150:619–627.

    Article  CAS  Google Scholar 

  • Abenavoli, M. R., Sorgonà, A., Sidari, M., Badiani, M., and Fuggi, A. 2003. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. J. Plant Physiol. 160:227–237.

    Article  PubMed  CAS  Google Scholar 

  • Abenavoli, M. R., Sorgonà, A., Albano, S., and Cacco, G. 2004. Coumarin differentially affects the morphology of different root types of maize seedlings. J. Chem. Ecol. 30:1871–1883.

    Article  PubMed  CAS  Google Scholar 

  • Abenavoli, M. R., Cacco, G., Sorgonà, A., Marabottini, R., Paolacci, A. R., Ciaffi, M., and Badiani, M. 2006. The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, cv. Simeto) seeds. J. Chem. Ecol. 32:489–506.

    Article  PubMed  CAS  Google Scholar 

  • Abenavoli, M. R., Nicolò, A., Lupini, A., Oliva, S., and Sorgonà, A. 2008. Effects of different allelochemicals on root morphology of Arabidopsis thaliana. Allelopathy J. 22:245–252.

    Google Scholar 

  • Baumert, A., Mock, H. P., Schmidt, J., Herbers, K., Sonnewald, U., and Strack, D. 2001. Patterns of phenylpropanoids in non-inoculated and potato virus Y-inoculation leaves of transgenic tobacco plants expressing yeast-derived invertase. Phytochemistry 56:535–541.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell, H. E., and Zhao, Y. 2003. Chemical genetic approaches to plant biology. Plant Physiol. 133:448–455.

    Article  PubMed  CAS  Google Scholar 

  • Bourgaud, F., Hehn, A., Larbat, R., Doerper, S., Gontier, E., Kellner, S., and Matern, U. 2006. Biosynthesis of coumarins in plants: a major pathway still to be unrevelled for cytochrome P450 enzymes. Phytochem. Rev. 5:293–308.

    Article  CAS  Google Scholar 

  • Bowles, D., Isayenkova, J., Lim, E. K., and Poppenberger, B. 2005. Glycosyltransferases: managers of small molecules. Curr. Opin. Plant. Biol. 8:254–263.

    Article  PubMed  CAS  Google Scholar 

  • Brooker, N. L., Kuzimichev, Y., Laas, J., and Pavlis, R. 2007. Evaluation of coumarin derivatives as anti-fungal agents against soil-borne fungal pathogens. Commun. Agric. Appl. Biol. Sci. 72:785–793.

    PubMed  CAS  Google Scholar 

  • Carpinella, M. C., Ferrayoli, C. G., and Palacios, S. M. 2005. Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J. Agric. Food Chem. 53: 2922–2927.

    Article  PubMed  CAS  Google Scholar 

  • Chong, J., Baltz, R., Schmitt, C., Beffa, R., Fritig, B., and Saindrenan, P. 2002. Down-regulation of a pathogen-responsive tobacco UDP-Glc: Phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14:1093–1107.

    Article  PubMed  CAS  Google Scholar 

  • de Dorlodot, S., Forster, B., Pages, L., Price, A., Tuberosa, R., and Draye, X. 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 12:474–481.

    Article  PubMed  Google Scholar 

  • Debolt, S., Gutierrez, R., Ehrhardt, D. W., Melo, C. V., Ross, L., Cutler, S. R., Somerville, C., and Bonetta, D. 2007. Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc. Natl. Acad. Sci. USA 104:5854–5859.

    Article  PubMed  CAS  Google Scholar 

  • de Smet, I., Vanneste, S., Inzé, D., and Beeckman, T. 2006. LRI or the birth of a new meristem. Plant Mol. Biol. 60:871–887.

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe, P., Grigoriev, I., Fischer, R., Tominaga, M., Robinson, D. G., Hasek, J., Paciorek, T., Petrasek, J., Seifertova, D., Tejos, R., et al. 2008. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc. Natl. Acad. Sci. USA 105: 4489–4494.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, R., Dixon, D. P., and Walbot, V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5:193–198.

    Article  PubMed  CAS  Google Scholar 

  • Fukaki, H., and Tasaka, M. 2009. Hormone interactions during lateral root formation. Plant Mol. Biol. Rep. 69:437–449.

    Article  CAS  Google Scholar 

  • Fukaki, H., Tameda, S., Masuda, H., and Tasaka, M. 2002. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 29:153–168.

    Article  PubMed  CAS  Google Scholar 

  • Gandia-Herrero, F., Lorenz, A., Larson, T., Graham, I. A., Bowles, D. J., Rylott, E. L., and Bruce, N. C. 2008. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases Plant J. 56:963–974.

    Article  PubMed  CAS  Google Scholar 

  • Gao, M.-J., Lydiate, D. J., Li, X., Lui, H., Gjetvaj, B., Hegedus, D. D., and Rozwadowski, K. 2009. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21:54–71.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, K., Kamio, S., Oono, Y., Townsend, L. B., and Nozaki, H. 2009. Toyocamycin specifically inhibits auxin signaling mediated by SCFTIR1 pathway. Phytochemistry 70:190–197.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R. A. 1987. Assaying chimeric gene in plant: The uidA gene fusion system. Plant Mol. Biol. Rep. 5:387–405.

    Article  CAS  Google Scholar 

  • Kai, K., Mizutani, M., Kawamura, N., Yomamoto, R., Tamai, M., Yamaguchi, H., Sakata, K., and Shimizu, B. 2008. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J. 55:989–999.

    Article  PubMed  CAS  Google Scholar 

  • Kostova, I., Raleva, S., Genova, P., and Argirova, R. 2006. Structure-activity relationships of synthetic coumarin as HIV-1 inhibitors. Bioinorganic Chem. Appl. p1–9.

  • Li, X., Gao, P., Gruber, M. Y., Westcott, N., and Gjetvaj, B. 2009a. Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci. 177:68–80.

    Article  CAS  Google Scholar 

  • Li, X., Liu, Z., Chen, Y., Wang, L., Zheng, Y., Sun, G., and Ruan, C. 2009b. Rubiacordone A: A new anthraquinone glycoside from the roots of Rubia cordifolia. Molecules 14:566–572.

    Article  CAS  Google Scholar 

  • Li, X., Qin, J.-C., Wang, Q.-Y., Wu, X., Pan, H.-Y., Gruber, M. Y., and Gao, M.-J. 2011. Metabolic engineering of isoflavone genistein in Brassica napus with soybean isoflavone synthase. Plant Cell Rep. (Online First doi:10.1007/s00299-011-1052-8).

  • Lim, E. K., Baldaul, S., Li, Y., Elisa, L., Worrall, D., Spencer, S. P., Jackson, R. G., Taguchi, G., Ross, J., and Bowles, D. J. 2003. Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13:139–145.

    Article  PubMed  CAS  Google Scholar 

  • Lupini, A., Sorgonà, A., Miller, A. J., and Abenavoli, M. R. 2010. Short-term effects of coumarin along the maize primary root axis. Plant Signal Behav. 5(11).

  • Mishra, B. S., Singh, M., Aggrawal, P., and Laxmi, A. 2009. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4:e4502.

    Article  PubMed  Google Scholar 

  • Motes, C. M., Pechter, P., Yoo, C. M., Wang, Y., Chapman, K. D., and Blancaflor, E. B. 2005. Differential effects of two phospholipase D inhibitor, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226:109–123.

    Article  PubMed  CAS  Google Scholar 

  • Nibau, C., Gibbs, D. J., and Coates, J. C. 2008. Braching out in new directions: the control of root architecture by lateral root formation. New Phytol. 179:595–614.

    Article  PubMed  CAS  Google Scholar 

  • Nick, P., Han, M. J., and An, G. 2009. Auxin stimulates its own transport by shaping actin filaments. Plant Physiol. 151:155–167.

    Article  PubMed  CAS  Google Scholar 

  • Osmont, K. S., Sibout, R., and Hardtke, C. S. 2007. Hidden braches: developments in root system architecture. Ann. Rev. Plant Biol. 58:93–113.

    Article  CAS  Google Scholar 

  • Petrásek, J. and Friml, J. 2009. Auxin transport routes in plant development. Development 136:2675–2688.

    Article  PubMed  Google Scholar 

  • Peret, B., de Rybel, B., Casimiro, I., Benkova, E., Swarup, R., Laplaze, L., Beeckman, T., and Bennett, M.J. 2009. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 14:399–408.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, S. B. 1971. The effect of coumarin on root growth and root histology. Physiol. Plant. 24: 446–470.

    Article  CAS  Google Scholar 

  • Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T. J. 1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971.

    Article  PubMed  CAS  Google Scholar 

  • Vanneste, S., and Friml, J. 2009. Auxin: a trigger for change in plant development. Cell 136:1005–1016.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. P., and Chang, Y. T. 2006. Chemical genetics. Chem. Review 106:2476–2530.

    Article  CAS  Google Scholar 

  • Zhao, J., Buchwaldt, L., Rimmer, S. R., Sharpe, A., Mcgregor, L., Bekkaoui, D., and Hegedus, D. 2009. Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Mol. Plant. Pathol. 10:635–649.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D., and Chory, J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

X. Li was a recipient of a Visiting Fellowship to a Government Laboratory of Canada. The authors are grateful for technical assistance from Dr. Branimir Gjetvaj. We also thank Dr. Elison B. Blancaflor for providing the 35S::ABD2-GFP construct and Drs. Elizabeth Schultz and Tom Guilfoyle for providing Arabidopsis thaliana DR5::GUS transgenic lines. This work was partially supported by the Program for New Century Excellent Talents in University (XL, NCET-09-0423), Ministry of Education of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jun Gao.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Changes in auxin distribution and root branching in response to 4-MU as observed in roots of Arabidopsis plants transformed with DR5::GUS. (A) Root system of a 14-d-old DR5::GUS seedling treated with 125 μM 4-MU showing GUS expression (blue) in the meristematically active primordia. (B) Primary root of a 14-d-old untreated DR5::GUS seedling. Arrows indicate active DR5::GUS expression. (DOC 1223 kb)

Supplemental Fig. 2

600-MHz 1H-NMR spectrum of 4-methylumbelliferone (4-MU). (DOC 60 kb)

Supplemental Fig. 3

600-MHz 1H-NMR spectrum of product (4-MU-Glc) after in vivo uptake of 125 μM 4-MU by Arabidopsis roots from the growth medium. (DOC 62 kb)

Supplemental Fig. 4

1H-1H COSY (correlation spectroscopy) of product (4-MU-Glc) from Arabidopsis roots after treatment with 125 μM 4-MU. (DOC 3358 kb)

Supplemental Fig. 5

HMBC (heteronuclear multiple bond correlation) of product (4-MU-Glc) after uptake of 125 μM 4-MU by Arabidopsis roots from the medium. (DOC 3398 kb)

Supplemental Fig. 6

Functional categorization of microarray data showing genes regulated by 4-MU. (DOC 3834 kb)

Supplementary Table 1

List of compounds showing root phenotyps in this study. (DOC 42 kb)

Supplementary Table 2

Genes upregulated after exposure to 4-MU. (XLS 74 kb)

Supplementary Table 3

Genes downregulated after exposure to 4-MU. (XLS 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gruber, M.Y., Hegedus, D.D. et al. Effects of a Coumarin Derivative, 4-Methylumbelliferone, on Seed Germination and Seedling Establishment in Arabidopsis . J Chem Ecol 37, 880–890 (2011). https://doi.org/10.1007/s10886-011-9987-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9987-3

Key Words

Navigation