Skip to main content
Log in

Synthesis and application of magnetic molecularly imprinted polymers in sample preparation

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Magnetic molecularly imprinted polymers (MMIPs) have superior advantages in sample pretreatment because of their high selectivity for target analytes and the fast and easy isolation from samples. To meet the demand of both good magnetic property and good extraction performance, MMIPs with various structures, from traditional core–shell structures to novel composite structures with a larger specific surface area and more accessible binding sites, are fabricated by different preparation technologies. Moreover, as the molecularly imprinted polymer (MIP) layers determine the affinity, selectivity, and saturated adsorption amount of MMIPs, the development and innovation of the MIP layer are attracting attention and are reviewed here. Many studies that used MMIPs as sorbents in dispersive solid-phase extraction of complex samples, including environmental, food, and biofluid samples, are summarized.

The application of magnetic molecularly imprinted polymers (MIPs) in the sample preparation procedure improves the analytical performances for complex samples. MITs molecular imprinting technologies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATRP:

Atom transfer radical polymerization

BPA:

Bisphenol A

CNT:

Carbon nanotube

DSPE:

Dispersive solid-phase extraction

EGDMA:

Ethylene glycol dimethacrylate

Fe3O4@SiO2 :

Silica-coated Fe3O4

FRP:

Free-radical polymerization

GO:

Graphene oxide

HPLC:

High-performance liquid chromatography

IF:

Imprinting factor

IIP:

Ion-imprinted polymer

LCRP:

Living/controlled radical polymerization

LOD:

Limit of detection

MAA:

Methacrylic acid

MIP:

Molecularly imprinted polymer

MIT:

Molecular imprinting technology

MMIP:

Magnetic molecularly imprinted polymer

MNP:

Magnetic nanoparticle

MPS :

3-(Methacryloxy)propyl trimethoxysilane

RAFT:

Reversible addition fragmentation chain transfer

si-ATRP:

Surface-initiated atom transfer radical polymerization

References

  1. Rios A, Zougagh M. Recent advances in magnetic nanomaterials for improving analytical processes. Trends Anal Chem. 2016;84:72–83.

    Article  CAS  Google Scholar 

  2. Chen LG, Wang T, Tong J. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. Trends Anal Chem. 2011;30(7):1095–108.

    Article  CAS  Google Scholar 

  3. Xie LJ, Jiang RF, Zhu F, Liu H, Ouyang GF. Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem. 2014;406(2):377–99.

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45(8):2137–211.

    Article  CAS  PubMed  Google Scholar 

  5. Rao HB, Lu ZW, Ge HW, Liu X, Chen BY, Zou P, et al. Electrochemical creatinine sensor based on a glassy carbon electrode modified with a molecularly imprinted polymer and a Ni@polyaniline nanocomposite. Microchim Acta. 2017;184(1):261–9.

    Article  CAS  Google Scholar 

  6. Li XX, Pan JM, Dai JD, Dai XH, Xu LC, Wei X, et al. Surface molecular imprinting onto magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin. Chem Eng J. 2012;198:503–11.

    Article  CAS  Google Scholar 

  7. Liu ZC, Hu ZY, Liu Y, Meng MJ, Ni L, Meng XG, et al. Monodisperse magnetic ion imprinted polymeric microparticles prepared by RAFT polymerization based on gamma-Fe2O3@meso-SiO2 nanospheres for selective solid-phase extraction of Cu(II) in water samples. RSC Adv. 2015;5(65):52369–81.

    Article  CAS  Google Scholar 

  8. Madrakian T, Afkhami A, Rahimi M, Ahmadi M, Soleimani M. Preconcentration and spectrophotometric determination of oxymetholone in the presence of its main metabolite (mestanolone) using modified maghemite nanoparticles in urine sample. Talanta. 2013;115:468–73.

    Article  CAS  PubMed  Google Scholar 

  9. Li XS, Xu LD, Shan YB, Yuan BF, Feng YQ. Preparation of magnetic poly(diethyl vinylphosphonate-co-ethylene glycol dimethacrylate) for the determination of chlorophenols in water samples. J Chromatogr A. 2012;1265:24–30.

    Article  CAS  PubMed  Google Scholar 

  10. Li YF, Qiao LQ, Li FW, Ding Y, Yang ZJ, Wang ML. Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry. J Chromatogr A. 2014;1361:77–87.

    Article  CAS  PubMed  Google Scholar 

  11. Liu M, Li XY, Li JJ, Su XM, Wu ZY, Li PF, et al. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples. Anal Bioanal Chem. 2015;407(13):3875–80.

    Article  CAS  PubMed  Google Scholar 

  12. Kim J, Piao Y, Lee N, Park YI, Lee IH, Lee JH, et al. Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv Mater. 2010;22(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Zhang LM, Wei XP, Li JP. A sensitive and renewable chlortoluron molecularly imprinted polymer sensor based on the gate-controlled catalytic electrooxidation of H2O2 on magnetic nano-NiO. Electroanalysis. 2013;25(5):1286–93.

    Article  CAS  Google Scholar 

  14. Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, et al. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc. 2006;128(33):10658–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gu XH, Xu R, Yuan GL, Lu H, Gu BR, Xie HP. Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Anal Chim Acta. 2010;675(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  16. Lu FG, Li HJ, Sun M, Fan LL, Qiu HM, Li XJ, et al. Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted nanoparticles for determination of sulfadiazine. Anal Chim Acta. 2012;718:84–91.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu WY, Jiang GY, Xu L, Li BZ, Cai QZ, Jiang HJ, et al. Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione. Anal Chim Acta. 2015;886:37–47.

    Article  CAS  PubMed  Google Scholar 

  18. Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc. 2012;134(2):1071–7.

    Article  CAS  PubMed  Google Scholar 

  19. Deng Y, Qi D, Deng C, Zhang X, Zhao D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc. 2008;130(1):28–9.

    Article  CAS  PubMed  Google Scholar 

  20. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Edit. 2005;44(18):2782–5.

    Article  CAS  Google Scholar 

  21. You QP, Zhang YP, Zhang QW, Guo JF, Huang WH, Shi SY, et al. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids. J Chromatogr A. 2014;1354:1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Behbahani M, Bagheri S, Amini MM, Abandansari HS, Moazami HR, Bagheri A. Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J Sep Sci. 2014;37(13):1610–6.

    Article  CAS  PubMed  Google Scholar 

  23. Lofgreen JE, Ozin GA. Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev. 2014;43(3):911–33.

    Article  CAS  PubMed  Google Scholar 

  24. Wang XH, Fang QX, Liu SP, Chen L. Preparation of a magnetic molecularly imprinted polymer with pseudo template for rapid simultaneous determination of cyromazine and melamine in bio-matrix samples. Anal Bioanal Chem. 2012;404:1555–64.

    Article  CAS  PubMed  Google Scholar 

  25. Hang H, Li CX, Pan JM, Li LZ, Dai JD, Dai XH, et al. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization. J Sep Sci. 2013;36(19):3285–94.

    CAS  PubMed  Google Scholar 

  26. Dai JD, He JS, Xie AT, Gao L, Pan JM, Chen X, et al. Novel pitaya-inspired well-defined core–shell nanospheres with ultrathin surface imprinted nanofilm from magnetic mesoporous nanosilica for highly efficient chloramphenicol removal. Chem Eng J. 2016;284:812–22.

    Article  CAS  Google Scholar 

  27. Liu LK, Cao Y, Ma PF, Qiu CX, Xu WZ, Liu H, et al. Rational design and preparation of magnetic imprinted polymers for removal of indole by molecular simulation and improved atom transfer radical polymerization. RSC Adv. 2014;4(2):605–16.

    Article  CAS  Google Scholar 

  28. He YH, Huang YY, Jin YL, Liu XJ, Liu GQ, Zhao R. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine. ACS Appl Mater Interfaces. 2014;6(12):9634–42.

    Article  CAS  PubMed  Google Scholar 

  29. Men HF, Liu HQ, Zhang ZL, Huang J, Zhang J, Zhai YY, et al. Synthesis, properties and application research of atrazine Fe3O4@SiO2 magnetic molecularly imprinted polymer. Environ Sci Pollut Res. 2012;19(6):2271–80.

    Article  CAS  Google Scholar 

  30. Ebrahimzadeh H, Asgharinezhad AA, Moazzen E, Amini MM, Sadeghi O. A magnetic ion-imprinted polymer for lead(II) determination: A study on the adsorption of lead(II) by beverages. J Food Compos Anal. 2015;41:74–80.

    Article  CAS  Google Scholar 

  31. Zhang YG, Song D, Lanni L, Shimizu KD. Importance of functional monomer dimerization in the molecular imprinting process. Macromolecules. 2010;43(15):6284–94.

    Article  CAS  Google Scholar 

  32. Hu YL, Pan JL, Zhang KG, Lian HX, Li GK. Novel applications of molecularly-imprinted polymers in sample preparation. Trends Anal Chem. 2013;43:37–52.

    Article  CAS  Google Scholar 

  33. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev. 2001;101(9):2921–90.

    Article  CAS  PubMed  Google Scholar 

  34. Liu YL, Huang YY, Liu JZ, Wang WZ, Liu GQ, Zhao R. Superparamagnetic surface molecularly imprinted nanoparticles for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis. J Chromatogr A. 2012;1246:15–21.

    Article  CAS  PubMed  Google Scholar 

  35. Jakubowski W, Matyjaszewski K. Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules. 2005;38(10):4139–46.

    Article  CAS  Google Scholar 

  36. Gonzato C, Courty M, Pasetto P, Haupt K. Magnetic molecularly imprinted polymer nanocomposites via surface-initiated RAFT polymerization. Adv Funct Mater. 2011;21(20):3947–53.

    Article  CAS  Google Scholar 

  37. Li JH, Dong RC, Wang XY, Xiong H, Xu SF, Shen DZ, et al. One-pot synthesis of magnetic molecularly imprinted microspheres by RAFT precipitation polymerization for the fast and selective removal of 17 beta-estradiol. RSC Adv. 2015;5(14):10611–8.

    Article  CAS  Google Scholar 

  38. Li Y, Li X, Chu J, Dong CK, Qi JY, Yuan YX. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions. Environ Pollut. 2010;158(6):2317–23.

    Article  CAS  PubMed  Google Scholar 

  39. Xu S, Li J, Chen L. Molecularly imprinted core-shell nanoparticles for determination of trace atrazine by reversible addition-fragmentation chain transfer surface imprinting. J Mater Chem. 2011;21(12):4346–51.

    Article  CAS  Google Scholar 

  40. Gao RX, Hao Y, Zhao SQ, Zhang LL, Cui XH, Liu DC, et al. Novel magnetic multi-template molecularly imprinted polymers for specific separation and determination of three endocrine disrupting compounds simultaneously in environmental water samples. RSC Adv. 2014;4(100):56798–808.

    Article  CAS  Google Scholar 

  41. Zhao BS, He M, Chen BB, Hu B. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection. Spectrochim Acta B. 2015;107:115–24.

    Article  CAS  Google Scholar 

  42. Liu XY, Yu D, Yu YC, Ji SJ. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B. Appl Surf Sci. 2014;320:138–45.

    Article  CAS  Google Scholar 

  43. Avnir D. Organic chemistry within ceramic matrixes: doped sol-gel materials. Acc Chem Res. 1995;28(8):328–34.

    Article  CAS  Google Scholar 

  44. Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal Chem. 2013;85(24):11944–51.

    Article  CAS  PubMed  Google Scholar 

  45. Xia XP, Xu ML, Wang YZ, Ran D, Yang S, Zhang M. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst. 2013;138(2):651–8.

    Article  Google Scholar 

  46. Li XJ, Zhou JJ, Tian L, Wang YF, Zhang BL, Zhang HP, et al. Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microspheres with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition. Sensors Actuators B Chem. 2017;241:413–21.

    Article  CAS  Google Scholar 

  47. Lee H, Dellatore SM, Miller WM, Messersmith PB. Messel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aguilar-Arteaga K, Rodriguez JA, Barrado E. Magnetic solids in analytical chemistry: a review. Anal Chim Acta. 2010;674(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  49. Zou YL, Zhao CY, Dai JD, Zhou ZP, Pan JM, Yu P, et al. Magnetic and hydrophilic imprinted particles via ATRP at room temperature for selective separation of sulfamethazine. Colloid Polym Sci. 2014;292(2):333–42.

    Article  CAS  Google Scholar 

  50. Li H, Hu X, Zhang YP, Shi SY, Jiang XY, Chen XQ. High-capacity magnetic hollow porous molecularly imprinted polymers for specific extraction of protocatechuic acid. J Chromatogr A. 2015;1404:21–7.

    Article  CAS  PubMed  Google Scholar 

  51. Luo J, Gao YH, Tan K, Wei W, Liu XY. Preparation of a magnetic molecularly imprinted graphene composite highly adsorbent for 4-nitrophenol in aqueous medium. ACS Sustain Chem Eng. 2016;4(6):3316–26.

    Article  CAS  Google Scholar 

  52. Ma GF, Chen LG. Development of magnetic molecularly imprinted polymers based on carbon nanotubes - application for trace analysis of pyrethroids in fruit matrices. J Chromatogr A. 2014;1329:1–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Y-G, Zhou L-X, Pan S-D, Zhan P-P, Chen X-H, Jin M-C. Fast determination of 22 sulfonamides from chicken breast muscle using core–shell nanoring amino-functionalized superparamagnetic molecularly imprinted polymer followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2014;1345:17–28.

    Article  CAS  PubMed  Google Scholar 

  54. Ma W, Dai JD, Dai XH, Da ZL, Yan YS. Core-shell molecularly imprinted polymers based on magnetic chitosan microspheres for chloramphenicol selective adsorption. Monatsh Chem. 2015;146(3):465–74.

    Article  CAS  Google Scholar 

  55. Yin YL, Yan L, Zhang ZH, Wang J. Magnetic molecularly imprinted polydopamine nanolayer on multiwalled carbon nanotubes surface for protein capture. Talanta. 2015;144:671–9.

    Article  CAS  PubMed  Google Scholar 

  56. Dai JD, Zhou ZP, Zou YL, Wei X, Dai XH, Li CX, et al. Surface imprinted core-shell nanorod with ultrathin water-compatible polymer brushes for specific recognition and adsorption of sulfamethazine in water medium. J Appl Polym Sci. 2014;131(19):40854.

    Article  CAS  Google Scholar 

  57. Yan L, Yin YL, Lv PP, Zhang ZH, Wang J, Long F. Synthesis and application of novel 3D magnetic chlorogenic acid imprinted polymers based on a graphene carbon nanotube composite. J Agric Food Chem. 2016;64(15):3091–100.

  58. Chambers SD, Holcombe TW, Svec F, JMJ F. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules. Anal Chem. 2011;83:9478–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ansell RJ, Mosbach K. Magnetic molecularly imprinted polymer beads for drug radioligand binding assay. Analyst. 1998;123(7):1611–6.

    Article  CAS  PubMed  Google Scholar 

  60. Luo XB, Huang YN, Deng F, Luo SL, Zhan YC, Shu HY, et al. A magnetic copper(II)-imprinted polymer for the selective enrichment of trace copper(II) ions in environmental water. Microchim Acta. 2012;179(3-4):283–9.

    Article  CAS  Google Scholar 

  61. Liu J, Wang W, Xie Y, Huang Y, Liu Y, Liu X, et al. A novel polychloromethylstyrene coated superparamagnetic surface molecularly imprinted core-shell nanoparticle for bisphenol A. J Mater Chem. 2011;21(25):9232–8.

    Article  CAS  Google Scholar 

  62. Xiao DL, Wang CX, Dai H, Peng J, He J, Zhang K, et al. Applications of magnetic surface imprinted materials for solid phase extraction of levofloxacin in serum samples. J Mol Recognit. 2015;28(5):277–84.

    Article  CAS  PubMed  Google Scholar 

  63. Xiao D, Dramou P, Xiong N, He H, Li H, Yuan D, et al. Development of novel molecularly imprinted magnetic solid-phase extraction materials based on magnetic carbon nanotubes and their application for the determination of gatifloxacin in serum samples coupled with high performance liquid chromatography. J Chromatogr A. 2013;1274:44–53.

    Article  CAS  PubMed  Google Scholar 

  64. Ma P, Zhou ZP, Dai JD, Qin L, Ye XB, Chen X, et al. A biomimetic Setaria viridis-inspired imprinted nanoadsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv. 2016;6(12):9619–30.

    Article  CAS  Google Scholar 

  65. Ning FJ, Qiu TT, Wang Q, Peng HL, Li YB, Wu XQ, et al. Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem. 2017;221:1797–804.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao YG, Chen XH, Pan SD, Zhu H, Shen HY, Jin MC. Self-assembly of a surface bisphenol A-imprinted core-shell nanoring amino-functionalized superparamagnetic polymer. J Mater Chem A. 2013;1(38):11648–58.

    Article  CAS  Google Scholar 

  67. Rios A, Zougagh M, Bouri M. Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review. Anal Methods. 2013;5:4558–73.

    Article  CAS  Google Scholar 

  68. Kubo T, Otsuka K. Recent progress in molecularly imprinted media by new preparation concepts and methodological approaches for selective separation of targeting compounds. Trends Anal Chem. 2016;81:102–9.

    Article  CAS  Google Scholar 

  69. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc. 1995;117(27):7105–11.

    Article  CAS  Google Scholar 

  70. Ki CD, Oh C, Oh SG, Chang JY. The use of a thermally reversible bond for molecular imprinting of silica spheres. J Am Chem Soc. 2002;124:14838–9.

    Article  CAS  PubMed  Google Scholar 

  71. Qiao FX, Row KH, Wang MG. Water-compatible magnetic imprinted microspheres for rapid separation and determination of triazine herbicides in environmental water. J Chromatogr B. 2014;957:84–9.

    Article  CAS  Google Scholar 

  72. Zhang Y, Liu RJ, Hu YL, Li G. Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Anal Chem. 2009;81(3):967–76.

    Article  CAS  PubMed  Google Scholar 

  73. Cho CMH, Mulchandani A, Chen W. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol. 2002;68(4):2026–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miao SS, Wu MS, Zuo HG, Jiang C, Jin SF, Lu YC, et al. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues. J Agric Food Chem. 2015;63(14):3634–45.

    Article  CAS  PubMed  Google Scholar 

  75. Pan JM, Zhu WJ, Dai XH, Yan XS, Gan MY, Li LZ, et al. Magnetic molecularly imprinted microcapsules derived from Pickering emulsion polymerization and their novel adsorption characteristics for lambda-cyhalothrin. RSC Adv. 2014;4(9):4435–43.

    Article  CAS  Google Scholar 

  76. Liu CB, Song ZL, Pan JM, Wei X, Gao L, Yan YS, et al. Molecular imprinting in fluorescent particle stabilized Pickering emulsion for selective and sensitive optosensing of lambda-cyhalothrin. J Phys Chem C. 2013;117(20):10445–53.77.

    Article  CAS  Google Scholar 

  77. Hu YL, Liu RJ, Zhang Y, Li GK. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system. Talanta. 2009;79(3):576–82.

    Article  CAS  PubMed  Google Scholar 

  78. Zare F, Ghaedi M, Daneshfar A, Ostovan A. Magnetic molecularly imprinted polymer for the efficient and selective preconcentration of diazinon before its determination by high-performance liquid chromatography. J Sep Sci. 2015;38(16):2797–803.

    Article  CAS  PubMed  Google Scholar 

  79. Bazmandegan-Shamili A, Dadfarnia S, Shabani AMH, Saeidi M, Moghadam MR. High-performance liquid chromatographic determination of diazinon after its magnetic dispersive solid-phase microextraction using magnetic molecularly imprinted polymer. Food Anal Methods. 2016;9(9):2621–30.

    Article  Google Scholar 

  80. Ma GF, Chen LG. Determination of chlorpyrifos in rice based on magnetic molecularly imprinted polymers coupled with high-performance liquid chromatography. Food Anal Methods. 2014;7(2):377–88.

    Article  Google Scholar 

  81. Xu SY, Guo CJ, Li YX, Yu ZR, Wei CH, Tang YW. Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils. J Hazard Mater. 2014;264:34–41.

    Article  CAS  PubMed  Google Scholar 

  82. You XX, Chen LG. Analysis of sulfonylurea herbicides in grain samples using molecularly imprinted polymers on the surface of magnetic carbon nanotubes by extraction coupled with HPLC. Anal Methods. 2016;8(5):1003–12.

    Article  CAS  Google Scholar 

  83. Lerma-Garcia MJ, Zougagh M, Rios A. Magnetic molecular imprint-based extraction of sulfonylurea herbicides and their determination by capillary liquid chromatography. Microchim Acta. 2013;180(5-6):363–70.

    Article  CAS  Google Scholar 

  84. Gao L, Wang JX, Li XY, Yan YS, Li CX, Pan JM. A core-shell surface magnetic molecularly imprinted polymers with fluorescence for lambda-cyhalothrin selective recognition. Anal Bioanal Chem. 2014;406(28):7213–20.

    Article  CAS  PubMed  Google Scholar 

  85. Li SH, Xu MZ, Wu XJ, Luo JH. Synergetic recognition and separation of kelthane and pyridaben base on magnetic molecularly imprinted polymer nanospheres. J Sep Sci. 2016;39(20):4019–26.

    Article  CAS  PubMed  Google Scholar 

  86. Li SH, Wu XJ, Zhang Q, Li PP. Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized beta-cyclodextrin. Microchim Acta. 2016;183(4):1433–9.

    Article  CAS  Google Scholar 

  87. Gao L, Chen LG, Li XW. Magnetic molecularly imprinted polymers based on carbon nanotubes for extraction of carbamates. Microchim Acta. 2015;182(3-4):781–7.

    Article  CAS  Google Scholar 

  88. Cheng XL, Yan HY, Wang XL, Sun N, Qiao XQ. Vortex-assisted magnetic dispersive solid-phase microextraction for rapid screening and recognition of dicofol residues in tea products. Food Chem. 2014;162:104–9.

    Article  CAS  PubMed  Google Scholar 

  89. Qiao FX, Gao MM, Yan HY. Molecularly imprinted ionic liquid magnetic microspheres for the rapid isolation of organochlorine pesticides in environmental water. J Sep Sci. 2016;39(7):1310–5.

    Article  CAS  PubMed  Google Scholar 

  90. Masoumi A, Hemmati K, Ghaemy M. Recognition and selective adsorption of pesticides by superparamagnetic molecularly imprinted polymer nanospheres. RSC Adv. 2016;6(55):49401–10.

    Article  CAS  Google Scholar 

  91. Moreno-Bondi MC, Marazuela MD, Herranz S, Rodriguez E. An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples. Anal Bioanal Chem. 2009;395(4):921–46.

    Article  CAS  PubMed  Google Scholar 

  92. Qin SL, Su LQ, Wang P, Gao Y. Rapid and selective extraction of multiple sulfonamides from aqueous samples based on Fe3O4-chitosan molecularly imprinted polymers. Anal Methods. 2015;7(20):8704–13.

    Article  CAS  Google Scholar 

  93. Chen HY, Zhang YQ, Gao B, Xu Y, Zhao Q, Hou J, et al. Fast determination of sulfonamides and their acetylated metabolites from environmental water based on magnetic molecularly imprinted polymers. Environ Sci Pollut Res. 2013;20(12):8567–78.

    Article  CAS  Google Scholar 

  94. Xu LC, Pan JM, Dai JD, Cao ZJ, Hang H, Li XX, et al. Magnetic ZnO surface-imprinted polymers prepared by ARGET ATRP and the application for antibiotics selective recognition. RSC Adv. 2012;2(13):5571–9.

    Article  CAS  Google Scholar 

  95. Kong JH, Wang YZ, Nie C, Ran D, Jia XP. Preparation of magnetic mixed-templates molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and honey samples. Anal Methods. 2012;4(4):1005–11.

    Article  CAS  Google Scholar 

  96. Zhou YS, Zhou TT, Jin H, Jing T, Song B, Zhou YK, et al. Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers. Talanta. 2015;137:1–10.

    Article  CAS  PubMed  Google Scholar 

  97. Ding J, Zhang FS, Zhang XP, Wang L, Wang CJ, Zhao Q, et al. Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectromer. J Chromatogr B. 2016;1021:221–8.

    Article  CAS  Google Scholar 

  98. Rao W, Cai R, Zhang ZH, Yin YL, Long F, Fu XX. Fast separation and determination of erythromycin with magnetic imprinted solid extraction coupled with high performance liquid chromatography. RSC Adv. 2014;4(36):18503–11.

    Article  CAS  Google Scholar 

  99. Wei SL, Li JW, Liu Y, Ma JK. Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples. J Chromatogr A. 2016;1473:19–27.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang X, Chen L, Xu Y, Wang H, Zeng Q, Zhao Q, et al. Determination of beta-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2010;878(32):3421–6.

    Article  CAS  Google Scholar 

  101. Wang YF, Wang YG, Ouyang XK, Yang LY. Surface-imprinted magnetic carboxylated cellulose nanocrystals for the highly selective extraction of six fluoroquinolones from egg samples. ACS Appl Mater Interfaces. 2017;9(2):1759–69.

    Article  CAS  PubMed  Google Scholar 

  102. Xiao DL, Dramou P, Xiong NQ, He H, Yuan DH, Dai H, et al. Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples. Analyst. 2013;138(11):3287–96.

    Article  CAS  PubMed  Google Scholar 

  103. Chen LG, Zhang XP, Xu Y, Du XB, Sun X, Sun L, et al. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2010;662(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  104. Chen XH, Zhao YG, Zhang Y, Shen HY, Pan SD, Jin MC. Ethylenediamine-functionalized superparamagnetic carbon nanotubes for magnetic molecularly imprinted polymer matrix solid-phase dispersion extraction of 12 fluoroquinolones in river water. Anal Methods. 2015;7(14):5838–46.

    Article  CAS  Google Scholar 

  105. Chen L, Liu J, Zeng Q, Wang H, Yu A, Zhang H, et al. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. J Chromatogr A. 2009;1216(18):3710–9.

    Article  CAS  PubMed  Google Scholar 

  106. Sadeghi O, Aboufazeli F, Zhad H, Karimi M, Najafi E. Determination of Pb(II) ions using novel ion-imprinted polymer magnetic nanoparticles: investigation of the relation between Pb(II) ions in cow's milk and their nutrition. Food Anal Methods. 2013;6(3):753–60.

    Article  Google Scholar 

  107. Asgharinezhad AA, Jalilian N, Ebrahimzadeh H, Panjali Z. A simple and fast method based on new magnetic ion imprinted polymer nanoparticles for the selective extraction of Ni(II) ions in different food samples. RSC Adv. 2015;5(56):45510–9.

    Article  CAS  Google Scholar 

  108. Kazemi E, Shabani AMH, Dadfarnia S. Synthesis and characterization of a nanomagnetic ion imprinted polymer for selective extraction of silver ions from aqueous samples. Microchim Acta. 2015;182(5-6):1025–33.

    Article  CAS  Google Scholar 

  109. Aboufazeli F, Zhad H, Sadeghi O, Karimi M, Najafi E. Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ions in food samples. Food Chem. 2013;141(4):3459–65.

    Article  CAS  PubMed  Google Scholar 

  110. Fayazi M, Taher MA, Afzali D, Mostafavi A, Ghanei-Motlagh M. Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions. Mater Sci Eng C Mater Biol Appl. 2016;60:365–73.

    Article  CAS  PubMed  Google Scholar 

  111. Ebrahimzadeh H, Kasaeian M, Khalilzadeh A, Moazzen E. New magnetic polymeric nanoparticles for extraction of trace cadmium ions and the determination of cadmium content in diesel oil samples. Anal Methods. 2014;6(13):4617–24.

    Article  CAS  Google Scholar 

  112. Zarezade V, Behbahani M, Omidi F, Abandansari HS, Hesam G. A new magnetic tailor made polymer for separation and trace determination of cadmium ions by flame atomic absorption spectrophotometry. RSC Adv. 2016;6(105):103499–507.

    Article  CAS  Google Scholar 

  113. Sayar O, Torbati NA, Saravani H, Mehrani K, Behbahani A, Zadeh HRM. A novel magnetic ion imprinted polymer for selective adsorption of trace amounts of lead(II) ions in environment samples. J Ind Eng Chem. 2014;20(5):2657–62.

    Article  CAS  Google Scholar 

  114. Cui Y, Liu JQ, Hu ZJ, Xu XW, Gao HW. Well-defined surface ion-imprinted magnetic microspheres for facile onsite monitoring of lead ions at trace level in water. Anal Methods. 2012;4(10):3095–7.

    Article  CAS  Google Scholar 

  115. Wei SL, Liu Y, Shao MD, Liu L, Wang HW, Liu YQ. Preparation of magnetic Pb(II) and Cd(II) ion-imprinted microspheres and their application in determining the Pb(II) and Cd(II) contents of environmental and food samples. RSC Adv. 2014;4(56):29715–23.

    Article  CAS  Google Scholar 

  116. He H, Xiao DL, He J, Li H, He H, Dai H, et al. Preparation of a core-shell magnetic ion-imprinted polymer via a sol-gel process for selective extraction of Cu(II) from herbal medicines. Analyst. 2014;139(10):2459–66.

    Article  CAS  PubMed  Google Scholar 

  117. Najafi E, Aboufazeli F, Zhad H, Sadeghi O, Amani V. A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury(II) ions in fish samples. Food Chem. 2013;141(4):4040–5.

    Article  CAS  PubMed  Google Scholar 

  118. Sadeghi S, Aboobakri E. Magnetic nanoparticles with an imprinted polymer coating for the selective extraction of uranyl ions. Microchim Acta. 2012;178(1-2):89–97.

    Article  CAS  Google Scholar 

  119. Aliakbari A, Amini MM, Mehrani K, Zadeh HRM. Magnetic ion imprinted polymer nanoparticles for the preconcentration of vanadium(IV) ions. Microchim Acta. 2014;181(15-16):1931–8.

    Article  CAS  Google Scholar 

  120. Ebrahimzadeh H, Moazzen E, Amini MM, Sadeghi O. Novel magnetic ion imprinted polymer as a highly selective sorbent for extraction of gold ions in aqueous samples. Anal Methods. 2012;4(10):3232–7.

    Article  CAS  Google Scholar 

  121. Kirsch N, Alexander C, Davies S, Whitcombe MJ. Sacrificial spacer and non-covalent routes toward the molecular imprinting of “poorly-functionalized” N-heterocycles. Anal Chim Acta. 2004;504(1):63–71.

    Article  CAS  Google Scholar 

  122. Hao Y, Gao RX, Shi L, Liu DC, Tang YH, Guo ZJ. Water-compatible magnetic imprinted nanoparticles served as solid-phase extraction sorbents for selective determination of trace 17beta-estradiol in environmental water samples by liquid chromatography. J Chromatogr A. 2015;1396:7–16.

    Article  CAS  PubMed  Google Scholar 

  123. Qiao L, Gan N, Hu FT, Wang D, Lan HZ, Li TH, et al. Magnetic nanospheres with a molecularly imprinted shell for the preconcentration of diethylstilbestrol. Microchim Acta. 2014;181(11-12):1341–51.

    Article  CAS  Google Scholar 

  124. Wang S, Wang R, Wu X, Wang Y, Xue C, Wu J, et al. Magnetic molecularly imprinted nanoparticles based on dendritic-grafting modification for determination of estrogens in plasma samples. J Chromatogr B. 2012;905:105–12.

    Article  CAS  Google Scholar 

  125. Lan HZ, Gan N, Pan DD, Hu FT, Li TH, Long NB, et al. Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples. J Chromatogr A. 2014;1365:35–44.

    Article  CAS  PubMed  Google Scholar 

  126. Lan HZ, Gan N, Pan DD, Hu FT, Li TH, Long NB, et al. An automated solid-phase microextraction method based on magnetic molecularly imprinted polymer as fiber coating for detection of trace estrogens in milk powder. J Chromatogr A. 2014;1331:10–8.

    Article  CAS  PubMed  Google Scholar 

  127. Rao W, Cai R, Yin YL, Long F, Zhang ZH. Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples. Talanta. 2014;128:170–6.

    Article  CAS  PubMed  Google Scholar 

  128. Ji YS, Yin JJ, Xu ZG, Zhao CD, Huang HY, Zhang HX, et al. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal Bioanal Chem. 2009;395(4):1125–33.

    Article  CAS  PubMed  Google Scholar 

  129. Lv YK, He YD, Xiong X, Wang JZ, Wang HY, Han YM. Layer-by-layer fabrication of restricted access media-molecularly imprinted magnetic microspheres for magnetic dispersion microextraction of bisphenol A from milk samples. New J Chem. 2015;39(3):1792–9.

    Article  CAS  Google Scholar 

  130. Wu X, Li YR, Zhu XL, He CY, Wang Q, Liu SR. Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase extraction and determination of bisphenol A in water samples and orange juice. Talanta. 2017;162:57–64.

    Article  CAS  PubMed  Google Scholar 

  131. Wang M, She YX, Du XW, Huang YT, Shi XM, Jin MJ, et al. Determination of melamine using magnetic molecular imprinted polymers and high performance liquid chromatography. Anal Lett. 2013;46(1):120–30.

    Article  CAS  Google Scholar 

  132. Zhao XY, Chen LG. Analysis of melamine in milk powder by using a magnetic molecularly imprinted polymer based on carbon nanotubes with ultra high performance liquid chromatography and tandem mass spectrometry. J Sep Sci. 2016;39(19):3775–81.

    Article  CAS  PubMed  Google Scholar 

  133. He D, Zhang XP, Gao B, Wang L, Zhao Q, Chen HY, et al. Preparation of magnetic molecularly imprinted polymer for the extraction of melamine from milk followed by liquid chromatography-tandem mass spectrometry. Food Control. 2014;36(1):36–41.

    Article  CAS  Google Scholar 

  134. Su XM, Li XY, Li JJ, Liu M, Lei FH, Tan XC, et al. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of rhodamine B in food. Food Chem. 2015;171:292–7.

    Article  CAS  PubMed  Google Scholar 

  135. Piao CY, Chen LG. Separation of Sudan dyes from chilli powder by magnetic molecularly imprinted polymer. J Chromatogr A. 2012;1268:185–90.

    Article  CAS  PubMed  Google Scholar 

  136. Xie XY, Chen L, Pan XY, Wang SC. Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis. J Chromatogr A. 2015;1405:32–9.

    Article  CAS  PubMed  Google Scholar 

  137. Tan L, He R, Chen KC, Peng RF, Huang C, Yang R, et al. Ultra-high performance liquid chromatography combined with mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated magnetic nanoparticles. Microchim Acta. 2016;183(4):1469–77.

    Article  CAS  Google Scholar 

  138. Urraca J, Huertas-Perez JF, Cazorla GA, Gracia-Mora J, Garcia-Campana AM, Moreno-Bondi MC. Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Anal Bioanal Chem. 2016;408(11):3033–42.

    Article  CAS  PubMed  Google Scholar 

  139. Gao RX, Zhang LL, Hao Y, Cui XH, Liu DC, Zhang M, et al. One-step preparation of magnetic imprinted nanoparticles adopting dopamine-cupric ion as a co-monomer for the specific recognition of bovine hemoglobin. J Sep Sci. 2015;38(20):3568–74.

    Article  CAS  PubMed  Google Scholar 

  140. Zhang M, Wang YZ, Jia XP, He MZ, Xu ML, Yang S, et al. The preparation of magnetic molecularly imprinted nanoparticles for the recognition of bovine hemoglobin. Talanta. 2014;120:376–85.

    Article  CAS  PubMed  Google Scholar 

  141. Sun YH, Chen J, Li YQ, Li H, Zhu XH, Hu YW, et al. Bio-inspired magnetic molecularly imprinted polymers based on Pickering emulsions for selective protein recognition. New J Chem. 2016;40(10):8745–52.

    Article  CAS  Google Scholar 

  142. Li YX, Chen YT, Huang L, Lou BY, Chen GN. Creating BHb-imprinted magnetic nanoparticles with multiple binding sites. Analyst. 2017;142(2):302–9.

    Article  CAS  PubMed  Google Scholar 

  143. Gai QQ, Qu F, Zhang T, Zhang YK. The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation. J Chromatogr A. 2011;1218(22):3489–95.

    Article  CAS  PubMed  Google Scholar 

  144. Chen FF, Zhao WF, Zhang JJ, Kong J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys Chem Chem Phys. 2016;18(2):718–25.

    Article  CAS  PubMed  Google Scholar 

  145. Bei ZJ, Chen Y, Ye J, Wang SS, Liu Z. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem Int Ed. 2015;54(35):10211–5.

    Article  CAS  Google Scholar 

  146. Sun LX, Lin DH, Lin GW, Wang L, Lin ZA. Click synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles with polydopamine coating for enrichment of trace glycoproteins. Anal Methods. 2015;7(23):10026–31.

    Article  CAS  Google Scholar 

  147. Ma RT, Ha W, Chen J, Shi YP. Highly dispersed magnetic molecularly imprinted nanoparticles with well-defined thin film for the selective extraction of glycoprotein. J Mater Chem B Mater Biol Med. 2016;4(15):2620–7.

    Article  CAS  Google Scholar 

  148. Guo LX, Hu XL, Guan P, Du CB, Wang D, Song DM, et al. Facile preparation of superparamagnetic surface-imprinted microspheres using amino acid as template for specific capture of thymopentin. Appl Surf Sci. 2015;357:1490–8.

    Article  CAS  Google Scholar 

  149. Xu XQ, Deng CH, Gao MX, Yu WJ, Yang PY, Zhang XM. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater. 2006;18(24):3289–93.

    Article  CAS  Google Scholar 

  150. Liu YB, Wang SS, Zhang C, Su X, Huang S, Zhao MP. Enhancing the selectivity of enzyme detection by using tailor-made nanoparticles. Anal Chem. 2013;85(10):4853–7.

    Article  CAS  PubMed  Google Scholar 

  151. Wan W, Han Q, Zhang XQ, Xie YM, Sun JP, Ding MY. Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting. Chem Commun. 2015;51(17):3541–4.

    Article  CAS  Google Scholar 

  152. Qin YP, Li DY, He XW, Li WY, Zhang YK. Preparation of high-efficiency cytochrome c-imprinted polymer on the surface of magnetic carbon nanotubes by epitope approach via metal chelation and six-membered ring. ACS Appl Mater Interfaces. 2016;8(16):10155–63.

    Article  CAS  PubMed  Google Scholar 

  153. Duan HM, Wang XJ, Wang YH, Sun YL, Li JB, Luo CN. An ultrasensitive lysozyme chemiluminescence biosensor based on surface molecular imprinting using ionic liquid modified magnetic graphene oxide/β-cyclodextrin as supporting material. Anal Chim Acta. 2016;918:89–96.

    Article  CAS  PubMed  Google Scholar 

  154. Tan L, Yu Z, Zhou X, Xing D, Luo X, Peng R, et al. Antibody-free ultra-high performance liquid chromatography/tandem mass spectrometry measurement of angiotensin I and II using magnetic epitope-imprinted polymers. J Chromatogr A. 2015;1411:69–76.

    Article  CAS  PubMed  Google Scholar 

  155. Madrakian T, Afkhami A, Mahmood-Kashani H, Ahmadi M. Superparamagnetic surface molecularly imprinted nanoparticles for sensitive solid-phase extraction of tramadol from urine samples. Talanta. 2013;105:255–61.

    Article  CAS  PubMed  Google Scholar 

  156. Kolaei M, Dashtian K, Rafiee Z, Ghaedi M. Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT-Fe3O4-NPs: central composite design optimization. Ultrason Sonochem. 2016;33:240–8.

    Article  CAS  PubMed  Google Scholar 

  157. Yang ZY, Cai QZ, Chen N, Zhou XM, Hong JL. Selective separation and identification of metabolite groups of Polygonum cuspidatum extract in rat plasma using dispersion solid-phase extraction by magnetic molecularly imprinted polymers coupled with LC/Q-TOF-MS. RSC Adv. 2016;6(15):12193–204.

    Article  CAS  Google Scholar 

  158. Svetushkina E, Puretskiy N, Ionov L, Stamm M, Synytska A. A comparative study on switchable adhesion between thermoresponsive polymer brushes on flat and rough surfaces. Soft Matter. 2011;7:5691–6.

    Article  CAS  Google Scholar 

  159. Wu Q, Wu DP, Guan YF. In vivo fast equilibrium microextraction by stable and biocompatible nanofiber membrane sandwiched in microfluidic device. Anal Chem. 2013;85(23):11524–31.

    Article  CAS  PubMed  Google Scholar 

  160. Zhu CH, Lu Y, Chen JF, Yu SH. Photothermal poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control. Small. 2014;10(14):2796–800.

    Article  CAS  PubMed  Google Scholar 

  161. Han H, Lee JY, Lu XM. Thermoresponsive nanoparticles + plasmonic nanoparticles = photoresponsive heterodimers: Facile synthesis and sunlight-induced reversible clustering. Chem Commun. 2013;49(55):6122–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (grants 21377172, 21225731, 21477166, 21527813, and 21225731) and the Natural Science Foundation of Guangdong Province (grant S2013030013474) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Xie or Gangfeng Ouyang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Xu, J., Zheng, J. et al. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 410, 3991–4014 (2018). https://doi.org/10.1007/s00216-018-1013-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1013-y

Keywords

Navigation