Skip to main content

Advertisement

Log in

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): a Powerful Analytical Technique for Elemental Analysis

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

ICP-OES is a powerful, versatile, and advanced analytical technique with excellent detection properties. Due to its extraordinary features, it has been widely employed for the analysis of a wide variety of chemical elements in the past few years with great success. It offers the least detection time, lower detection limits, broader linear dynamic range, and greater matrix tolerability as well as negligible chemical interferences. Beyond this, it can handle multiple varieties of samples including aqueous, inorganic, organic liquids, and solids as well. It comprises complex instrumental makeup which enables it to detect up to 2 to 70 elements simultaneously with great accuracy. Recent reports evidenced that this hyphenated technique has been employed in several analytical determinations including food analysis, agricultural investigations, geological studies, drug/metabolite analysis, and environmental and forensic sciences. In the present compilation, a detailed description of the fundamental principles of ICP-OES has been provided along with its various sophisticated functional components. Also, the reported applications of this technique in different fields have been discussed highlighting the basic experimental setups and outcomes by presenting the data as tables. This summarization may be helpful to analysts to get insights into the working as well as performance characteristics of this technique.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera JA, Aragón C, Cristoforetti G, Tognoni E (2009) Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma. Spectrochimica Acta Part B: Atomic Spectros 64:685–689

    Article  Google Scholar 

  • Clarice DB Amaral, Raquel C. Machado, Juan A. V. A. Barros, Alex Virgilio, Daniela Schiavo, Ana Rita A. Nogueira and Joaquim A. Nóbrega (2016) Determination of rare earth elements in geological samples using the Agilent SVDV ICP-OES, p.59-63

  • Asfaw A, MacFarlane WR, Beauchemin D (2012) Ultrasonic nebulization with an infrared heated pre-evaporation tube for sample introduction in ICP-OES: application to geological and environmental samples. J Analyt Atom Spectro 27:1254–1263

    Article  CAS  Google Scholar 

  • Bakircioglu D, Kurtulus YB, Yurtsever S (2013) Comparison of extraction induced by emulsion breaking, ultrasonic extraction and wet digestion procedures for determination of metals in edible oil samples in Turkey using ICP-OES. Food Chem 138:770–775

    Article  CAS  PubMed  Google Scholar 

  • Balaram V (2016) Recent advances in the determination of elemental impurities in pharmaceuticals–status, challenges and moving frontiers. Trac trends Analyt Chem 80:83–95

    Article  CAS  Google Scholar 

  • Barros JA, Machado RC, Amaral CD, Schiavo D, Nogueira AR, Nóbrega JA (2016) Plant nutrient analysis using the Agilent 5100 Synchronous Vertical Dual View ICP OES. Inductively coupled plasma optical emission spectroscopy (ICP-OES). 45-49

  • Bendicho C, de Loos-Vollebregt MT (1991) Solid sampling in electrothermal atomic absorption spectrometry using commercial atomizers. A review J Anal Atom Spectrom 6:353–374

    Article  CAS  Google Scholar 

  • Bibinov N, Halfmann H, Awakowicz P, Wiesemann K (2007) Relative and absolute intensity calibrations of a modern broadband echelle spectrometer. Meas Sci Technol 18:1327

    Article  CAS  Google Scholar 

  • Bilhorn RB, Epperson PM, Sweedler JV, Denton MB (1987a) Spectrochemical measurements with multichannel integrating detectors. Appl Spectro 41:1125–1136

    Article  CAS  Google Scholar 

  • Bilhorn RB, Sweedler JV, Epperson PM, Denton MB (1987b) Charge transfer device detectors for analytical optical spectroscopy—operation and characteristics. App Spectro 41:1114–1125

    Article  CAS  Google Scholar 

  • Bings NH, Von Niessen JO, Schaper JN (2014) Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry—critical review. Spectrochimica Acta Part B: Atomic Spectros 100:14–37

    Article  CAS  Google Scholar 

  • Bombardelli E, Morazzoni P, Griffini A (1996) Aesculus hippocastanum L. Fitoterapia 67:483–511

    CAS  Google Scholar 

  • Bruins AP, Covey TR, Henion JD (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59:2642–2646

    Article  CAS  Google Scholar 

  • Carey JM, Caruso JA (1992) Electrothermal vaporization for sample introduction in plasma source spectrometry. Crit Rev Anal Chem 23:397–439

    Article  CAS  Google Scholar 

  • Cauduro J (2016) Ultra-high-speed analysis of soil extracts using an advanced valve system installed on an Agilent 5110 SVDV ICP-OES, inductively coupled plasma optical emission spectroscopy (ICP-OES). 35-38

  • Charles B, Fredeen KJ (1997) Concepts, instrumentation and techniques in inductively coupled plasma optical emission spectrometry. Perkin Elmer Corp

  • Cortez J, Pasquini C (2013) Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy. Analyt Chemist 85:1547–1554

    Article  CAS  Google Scholar 

  • D’Archivio AA, Foschi M, Aloia R, Maggi MA, Rossi L, Ruggieri F (2019) Geographical discrimination of red garlic (Allium sativum L.) produced in Italy by means of multivariate statistical analysis of ICP-OES data. Fo Chem 275:333–338

    Article  Google Scholar 

  • Donati GL, Amais RS, Williams CB (2017) Recent advances in inductively coupled plasma optical emission spectrometry. J Anal Atom Spectrom 32:1283–1296

    Article  CAS  Google Scholar 

  • Drvodelic N (n.d.) Simultaneous determination of hydride and non-hydride elements in fish samples using the Agilent 5110 SVDV ICP-OES with MSIS accessory, inductively coupled plasma optical emission spectroscopy (ICP-OES): pg. no. 23-27

  • Durante C, Cocchi M, Lancelotti L, Maletti L, Marchetti A, Tassi L (2021) Analytical concentrations of some elements in seeds and crude extracts from Aesculus hippocastanum, by ICP-OES technique. Agronomy 11:47

    Article  CAS  Google Scholar 

  • Duyck C, Miekeley N, da Silveira CL, Aucelio RQ, Campos RC, Grinberg P, Brandao GP (2007) The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry. Spectrochimica Acta Part B: Atomic Spectros 62:939–951

    Article  Google Scholar 

  • Fassel VA, Kniseley RN (1974) Inductively coupled plasma. Optical emission spectroscopy. Analyt Chem 46:1110A–1120a

    Article  CAS  Google Scholar 

  • Floyd MA, Fassel VA, Winge RK, Katzenberger JM, D’silva AP (1980) Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid sequential determination of the elements. Analyt Chem 52:431–438

    Article  CAS  Google Scholar 

  • Ghosh S, Prasanna VL, Sowjanya B, Srivani P, Alagaraja M, Banji D (2013) Inductively coupled plasma–optical emission spectroscopy: a review. A J Pharma Anal 3:24–33

    Google Scholar 

  • Giussani B, Monticelli D, Rampazzi L (2009) Role of laser ablation–inductively coupled plasma–mass spectrometry in cultural heritage research: a review. Anal Chem Acta 635:6–21

    Article  CAS  Google Scholar 

  • Günther D, Jackson SE, Longerich HP (1999) Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochimica Acta Part B: Atomic Spectros 54:381–409

    Article  Google Scholar 

  • Harrison GR (1973) The diffraction grating—an opinionated appraisal. Applied optics 12:2039–2049

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Amais RS, Jones BT, Donati GL (2006) Inductively coupled plasma optical emission spectrometry. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 1-25

  • Jarzebski M, Smułek W, Siejak P, Kobus-Cisowska J, Pieczyrak D, Baranowska HM (2019) E. Aesculus hippocastanum L. extract as a potential emulsion stabilizer. Food Hydrocoll 57:105237

    Article  Google Scholar 

  • Jin Q, Zhu CH, Border MW, Hieftje GM (1991) A microwave plasma torch assembly for atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectros 46:417–430

    Article  Google Scholar 

  • Johnson WL., West LG., inventors; Tokyo Electron Ltd, assignee (2004) Radio frequency power source for generating an inductively coupled plasma. United States patent US 6,740,842

  • Kannamkumarath SS, Wrobel K, Wrobel K, B’Hymer C, Caruso JA (2002) Capillary electrophoresis–inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis. J Chrom A 975:245–266

    Article  CAS  Google Scholar 

  • Karasakal A (2020) Determination of trace and major elements in vegan milk and oils by ICP-OES after microwave digestion. Biol Trace Elem Res 197:683–693

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, Choi JY, Kwak BM, Ahn JH, Yoon T, Kim KS (2013) Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Fo Chem 141:3566–3570

    Article  CAS  Google Scholar 

  • Klostermeier A, Engelhard C, Evers S, Sperling M, Buscher W (2005) New torch design for inductively coupled plasma optical emission spectrometry with minimised gas consumption. J Analyt Atom Spectro 20:308–314

    Article  CAS  Google Scholar 

  • Krejčová A, Kahoun D, Černohorský T, Pouzar M (2006) Determination of macro and trace element in multivitamins preparations by inductively coupled plasma optical emission spectrometry with slurry sample introduction. Fo Chemi 98:171–178

    Article  Google Scholar 

  • Kulander KC, Schafer KJ, Krause JL (1993) Dynamics of short-pulse excitation, ionization and harmonic conversion. In Super-intense laser-atom physics. Springer, Boston, pp 95–110

    Book  Google Scholar 

  • Kulikov E (2016) Determination of elemental nutrients in DTPA extracted soil using the Agilent 5110 SVDV ICP-OES, inductively coupled plasma optical emission spectroscopy (ICP-OES). 39–44

  • Li L, Chen Y, Yang L, Wang Z, Liu H (2020) Recent advances in applications of metal–organic frameworks for sample preparation in pharmaceutical analysis. Coord Chem Rev 411:213–235

    Article  Google Scholar 

  • Lienemann CP, Dreyfus S, Pecheyran C, Donard OF (2007) Trace metal analysis in petroleum products: sample introduction evaluation in ICP-OES and comparison with an ICP-MS approach. Oil Gas Sci Technol-Revue de l’IFP 62:69–77

    Article  CAS  Google Scholar 

  • Luis G, Rubio C, Revert C, Espinosa A, González-Weller D, Gutiérrez AJ, Hardisson A (2015) Dietary intake of metals from yogurts analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). J Fo Compos Anal 39:48–54

    Article  CAS  Google Scholar 

  • Majumdar AJ, Dubey N (2017) Applications of inductively coupled plasma-atomic emission spectrometry (ICP-OES) in impurity profiling of pharmaceuticals. Int J Pharm Life Sci, 8(1)

  • Makishima A, Nakamura E (2009) Determination of Ge, As, Se and Te in silicate samples using isotope dilution-internal standardisation octopole reaction cell ICP-QMS by normal sample nebulisation. Geostand Geoanalyt Res 33:369–384

    Article  CAS  Google Scholar 

  • Martinez S, Sanchez R, Lefevre J, Todoli J (2020) Multielemental analysis of vegetable oils and fats by means of ICP-OES following dilution and shot methodology. J Analytic Atomic Spectrom. https://doi.org/10.1039/D0JA00112K

  • Mermet JM, Ivaldi JC (1993) Real-time internal standardization for inductively coupled plasma atomic emission spectrometry using a custom segmented-array charge coupled device detector. J Analyt.Atom Spectro 8:795–801

    Article  CAS  Google Scholar 

  • Naozuka J, Vieira EC, Nascimento AN, Oliveira PV (2011) Elemental analysis of nuts and seeds by axially viewed ICP OES. Fo Chem 124:1667–1672

    Article  CAS  Google Scholar 

  • Nelson J, Gilleland G, Hopfer H, Ebeler SE (n.d.) Elemental profiling of whiskey using the Agilent 5100/5110 ICP-OES and MPP chemometrics software, inductively coupled plasma optical emission spectroscopy (ICP-OES): pg. no. 28-34

  • Olesik JW (1991) Elemental analysis using ICP-OES and ICP/MS. Anal Chem 63:12A–21A

    Article  CAS  Google Scholar 

  • Palmer CA, Loewen EG (2002) Diffraction grating handbook. Thermo RGL, New York

    Google Scholar 

  • Pennebaker FM, Williams RH, Norris JA, Denton MB (1999) Developments in detectors in atomic spectroscopy. Ad Atom Spectro 5:145–172

    Article  CAS  Google Scholar 

  • Pollard AM, Batt CM, Stern B, Young SM, Young SM (2007) Analytical chemistry in archaeology. Cambridge University Press

  • Pradhan SK, Ambade B (2020) Extractive separation of rare earth elements and their determination by inductively coupled plasma optical emission spectrometry in geological samples. J Analyt Atom Spectro 35:1395–1404

    Article  CAS  Google Scholar 

  • Radehaus CV., Sauer JR., Willebrand H., inventors; Eagle Optoelectronics LLC, University of Technology Corp, assignee (1998) Optical wavelength tracking receiver. United States patent US 5,838,470

  • Rajput MI, Jain VK, Jain DP, Aggarwal MA, Khandal RK (2010) Quantitative determination of boron content in tamsulosin hydrochloride using inductively coupled plasma optical emission spectroscopy. Int J Pharm Pharmaceu Sci 2:182–185

    CAS  Google Scholar 

  • Razeghi M, Rogalski J (1996) Semiconductor ultraviolet detectors. 79, 7433-7473

  • Rogalski A (2004) Optical detectors for focal plane arrays. Optoelect Rev 12:221–246

    CAS  Google Scholar 

  • Rogalski A (2012) History of infrared detectors. Opto-Electronics Rev 20:279–308

    Article  Google Scholar 

  • Schenk ER, Almirall JR (2012) Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES). Forensic science Int 217:222–228

    Article  CAS  Google Scholar 

  • Sheeran PS, Daghighi Y, Yoo K, Williams R, Cherin E, Foster FS, Burns PN (2016) Image-guided ultrasound characterization of volatile sub-micron phase-shift droplets in the 20–40 MHz frequency range. Ultra Med Bio 42:795–807

    Article  Google Scholar 

  • Shen Y, Zheng C, Jiang X, Wu X, Hou X (2015) Integration of hydride generation and photochemical vapor generation for multi-element analysis of traditional Chinese medicine by ICP-OES. Microchem J 123:164–169

    Article  CAS  Google Scholar 

  • Sirtori CM (2001) Aescin: Pharmacology, pharmacokinetics and therapeutic profile. Pharmacol Res 44:183–193

    Article  CAS  PubMed  Google Scholar 

  • Smith CM (1997) Use of a segmented array charge coupled device detector for continuum source atomic absorption spectrometry with graphite furnace atomization. J Analyt Atom Spectro 12:617–627

    Article  Google Scholar 

  • Soltanpour PN, Johnson GW, Workman SM, Jones JB Jr, Miller RO (1996) Inductively coupled plasma emission spectrometry and inductively coupled plasma-mass spectrometry. Methods of Soil Analysis: Part 3. Chemical Methods 5:91–139

    Google Scholar 

  • Sweedler JV, Jalkian RD, Denton MB (1989) A linear charge-coupled device detector system for spectroscopy. App Spectro 43:953–962

    Article  CAS  Google Scholar 

  • Taggart Jr JE, Lindsay JR, Scott BA, Vivit DV, Bartel AJ, Stewart KC (1987) Analysis of geologic materials by wavelength-dispersive X-ray fluorescence spectrometry. In Methods for geochemical analysis, US Geological Survey Bulletin (Vol. 1770, pp. E1-E19)

  • Thiagarajan V, Selvaraju C, Malar EP, Ramamurthy P (2004) A novel fluorophore with dual fluorescence: local excited state and photoinduced electron-transfer-promoted charge-transfer state. Chem Phys Chem 5:1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Thomas R (2001) A beginner’s guide to ICP-MS. Spectroscopy 16:38–42

    Google Scholar 

  • Thompson M (2012) Handbook of inductively coupled plasma spectrometry. Springer Science & Business Media

  • Todoli JL, Mermet JM (2011) Liquid sample introduction in ICP spectrometry: a practical guide. Elsevier

  • Torres DP, Vieira MA, Ribeiro AS, Curtius AJ (2007) Slurry sampling for arsenic determination in sediments by hydride generation atomic absorption spectrometry. J Braz Chem Soc 18:728–732

    Article  CAS  Google Scholar 

  • Tyler G, Jobin Yvon S (1995) ICP-OES, ICP-MS and AAS techniques compared. ICP Optical Emission Spectroscopy Technical Note.; 5

  • Vallapragada VV, Inti G, Ramulu JS (2011) A Validated inductively coupled plasma-optical emission spectrometry (ICP-OES) method to estimate free calcium and phosphorus in in vitro phosphate binding study of Eliphos tablets. A J Analyt Chem 2:718

    Article  CAS  Google Scholar 

  • Veeramachaneni M, Jayavarapu KR (2013) Development and validation of new ICP-OES Analytical Technique to quantify the contents of copper, magnesium & zinc in “Escitalopram Oxalate”. J Ad Pharm Edu Res 3(4)

  • Walkup RE, Saenger KL, Selwyn GS (1986) Studies of atomic oxygen in O2+ CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy. J Chem Phy 84:2668–2674

    Article  CAS  Google Scholar 

  • Wang T (2004) Inductively coupled plasma optical emission spectrometry. International Analytical Instrumentation Handbook, CRC Press. (pp. 83-100)

  • Warren T (1993) Development of an atomic fluorescence spectrometer for the hydride-forming elements. J Anal Atom Spectrom 8:7–71

    Google Scholar 

  • Welna M, Borkowska-Burnecka J, Popko M (2015) Ultrasound-and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples. Talanta 144:953–959

    Article  CAS  PubMed  Google Scholar 

  • Welz B (2006) Analytical atomic spectrometry with flames and plasmas. Plasma Processes and Polymers. Wiley Online Library, 3(1),77-82

  • Wiederin DR, Smith FG, Houk RS (1991) Direct injection nebulization for inductively coupled plasma mass spectrometry. Analyt Chem 63:219–225

    Article  CAS  Google Scholar 

  • Wilson JR., inventor; Wilson, John R., assignee (1996) Adaptor for neurophysiological monitoring with a personal computer. United States patent US 5,540,235

  • Wolnik KA (1988) Inductively coupled plasma-emission spectrometry. In Methods in enzymology, Academic Press, 158,190-205

  • Yang J, Bai J, Liu M, Chen Y, Wang S, Yang Q (2018) Determination of phosphorus in soil by ICP-OES using an improved standard addition method. J Analyt Meth Chem

  • Yu X, Shen Y, Liu T, Wu TT, Wang QJ (2015) Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation. Scient Re 5:12014

    Google Scholar 

  • Yurkov A (2017) Refractories and carbon cathode materials for aluminum reduction cells. In: Refractories for Aluminum. Springer, Cham, pp 75–227

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Bhatia.

Ethics declarations

Ethical Approval

No approval was required.

Informed Consent

Informed consent not applicable.

Conflict of Interest

Declared None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.R., Sharma, B., Chawla, P.A. et al. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): a Powerful Analytical Technique for Elemental Analysis. Food Anal. Methods 15, 666–688 (2022). https://doi.org/10.1007/s12161-021-02148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-021-02148-4

Keywords

Navigation