Skip to main content
Log in

Phase Transitions of Single Semistiff Polymer Chains

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the “prunedenriched Rosenbluth Method” (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low-T states. This allows us to study in detail the phase diagram as a function of nn attractionε and stiffnessx. It shows aθ-collapse line with a transition from open coils (smallε) to molten compact globules (largeε) and a freezing transition toward a state with orientational global order (large stiffnessx). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996),J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, theθ-temperatureincreases with stiffnessx. The freezing temperature increases even faster, and reaches theθ-line at a finite value ofx. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniachet al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Creighton,Protein Folding (W.H. Freeman, New York, 1992).

    Google Scholar 

  2. S. Doniach, T. Garel, and H. Orland,J. Chem. Phys. 105:1601 (1996).

    Article  ADS  Google Scholar 

  3. P. G. De Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1988).

    Google Scholar 

  4. P. J. Flory,Proc. Roy. Soc. A 234:60 (1956).

    Article  ADS  Google Scholar 

  5. A. BaumgÄrtner and D. Y. Yoon,J. Chem. Phys. 79:521 (1983).

    Article  ADS  Google Scholar 

  6. D. Y. Yoon and A. BaumgÄrtner,Macromolecules 17:2864 (1984).

    Article  Google Scholar 

  7. A. BaumgÄrtner,J. Chem. Phys. 84(3):1905 (1986).

    Article  ADS  Google Scholar 

  8. A. Kolinski, J. Skolnick, and Y. Yaris,Procl. Natl. Acad. Sci. 83:7267 (1986).

    Article  ADS  Google Scholar 

  9. A. Kolinski, J. Skolnick, and Y. Yaris,J. Chem. Phys. 85:3585 (1986).

    Article  ADS  Google Scholar 

  10. M. L. Mansfield,Macromolecules 27:4699 (1994).

    Article  Google Scholar 

  11. A. Moskalenko, Yu. A. Kuznetsov, and K. A. Dawson,J. Phys. II France 7:409 (1997).

    Article  Google Scholar 

  12. P. Grassberger,Phys. Rev. E 56:3682 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Grassberger, to be published (1997).

  14. H. Frauenkron and P. Grassberger, preprint cond-mat/9707101 (1997).

  15. P. Grassberger and R. Hegger,J. Chem. Phys. 102:6881 (1995).

    Article  ADS  Google Scholar 

  16. M. N. Rosenbluth and A. W. Rosenbluth,J. Chem. Phys. 23:356 (1955).

    Article  Google Scholar 

  17. J. Batoulis and K. Kremer,J. Phys. A 21:127 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  18. F. T. Wall and J. J. Erpenbeck,J. Chem. Phys. 30:634 (1959).

    Article  ADS  Google Scholar 

  19. P. P. Nidras and R. Brak,J. Phys. A 30:1457 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. B. Li, N. Madras, and A. Sokal,J. Stat. Phys. 80:661 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. R. Dickman,J. Chem. Phys. 87:2246 (1987).

    Article  ADS  Google Scholar 

  22. H. Frauenkron, U. Bastolla, P. Grassberger, E. Gerstner, and W. Nadler, preprint condmat/90705146(1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastolla, U., Grassberger, P. Phase Transitions of Single Semistiff Polymer Chains. J Stat Phys 89, 1061–1078 (1997). https://doi.org/10.1007/BF02764222

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764222

Key words

Navigation