Skip to main content
Log in

Thermodynamic and conformational insights into the phase transition of a single flexible homopolymer chain using replica exchange Monte Carlo method

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The phase transition of a single flexible homopolymer chain in the limit condition of dilute solution is systematically investigated using a coarse-grained model. Replica exchange Monte Carlo method is used to enhance the performance of the conformation space exploration, and thus detailed investigation of phase behavior of the system can be provided. With the designed potentials, the coil-globule transition and the liquid–solid-like transition are identified, and the transition temperatures are measured with the conformational and thermodynamic analyses. Additionally, by extrapolating the coil-globule transition temperature, T Θ , and the liquid–solid-like transition temperature to the thermodynamic limit, N → ∞, we found no “tri-critical” point in the current model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. de Gennes PG (1979) Scaling concepts in polymer physics (Cornell University)

  2. Milchev A, Paul W, Binder K (1993) J Chem Phys 99(6):4786

    Article  CAS  Google Scholar 

  3. Wittkop M, Kreitmeier S, Göritz D (1996) Phys Rev E 53(1):838

    Article  CAS  Google Scholar 

  4. Kuznetsov YA, Timoshenko EG, Dawson KA (1996) J Chem Phys 104(1):336

    Article  CAS  Google Scholar 

  5. Ganazzoli F (1997) Macromol Theory Simul 6(2):351

    Article  CAS  Google Scholar 

  6. Rampf F, Paul W, Binder K (2005) Europhys Lett 70(5):628

    Article  CAS  Google Scholar 

  7. Parsons DF, Williams DRM (2006) Phys Rev E 74(4):041804

    Article  Google Scholar 

  8. Maffi C, Baiesi M, Casetti L, Francesco P, Rios PDL (2012) Nat Commun 3:1065

    Article  Google Scholar 

  9. Grassberger P (2013) Europhys Lett 103(2):26003

    Article  Google Scholar 

  10. Taylor MP, Paul W, Binder K (2009) J Chem Phys 131(11):114907

    Article  Google Scholar 

  11. Gross J, Neuhaus T, Vogel T, Bachmann M (2013) J Chem Phys 138(7):074905

    Article  CAS  Google Scholar 

  12. Kremer K, Grest GS (1990) J Chem Phys 92(8):5057

    Article  CAS  Google Scholar 

  13. Mitsutake A, Sugita Y, Okamoto Y (2003) J Chem Phys 118(1):6664

    Article  CAS  Google Scholar 

  14. Wang L, Chen T, Lin X, Liu Y, Liang H (2009) J Chem Phys 131(24):244902

    Article  Google Scholar 

  15. Ferrenberg AM, Swendsen RH (1989) Phys Rev Lett 63(12):1195

    Article  CAS  Google Scholar 

  16. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) J Comput Chem 13(8):1011

    Article  CAS  Google Scholar 

  17. Binder K (1995) Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press)

  18. Wang F, Landau DP (2001) Phys Rev Lett 86(10):2050

    Article  CAS  Google Scholar 

  19. Wang F, Landau DP (2001) Phys Rev E 64(5):056101

    Article  CAS  Google Scholar 

  20. Gai L, Vogel T, Maerzke KA, Iacovella CR, Landau DP, Cummings PT, McCabe C (2013) J Chem Phys 139(5):054505

    Article  Google Scholar 

  21. Junghans C, Bachmann M, Janke W (2006) Phys Rev Lett 97(21):218103

    Article  Google Scholar 

  22. Berg BA, Neuhaus T (1991) Phys Lett B 267(2):249

    Article  Google Scholar 

  23. Berg BA, Neuhaus T (1992) Phys Rev Lett 68(1):9

    Article  Google Scholar 

  24. Bachmann M, Janke W (2005) Phys Rev Lett 95(5):058102

    Article  Google Scholar 

  25. Osborne KL, Bachmann M, Strodel B (2013) Proteins 81(7):1141

    Article  CAS  Google Scholar 

  26. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21(6):1087

    Article  CAS  Google Scholar 

  27. Hernández-Rojas J, Gomez Llorente JM (2008) Phys Rev Lett 100(25):258104

    Article  Google Scholar 

  28. Schnabel S, Bachmann M, Janke W (2010) J Chem Phys 131(12):124904

    Article  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33

    Article  CAS  Google Scholar 

  30. Zhou Y, Karplus M, Ball KD, Berry RS (2002) J Chem Phys 116(5):2323

    Article  CAS  Google Scholar 

  31. Berry RS, Beck TL, Davis HL, Jellinek J (1988) Adv Chem Phys 70(2):75

    Google Scholar 

  32. Grassberger P, Hegger R (1995) J Chem Phys 102(17):6881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support provided by the National Natural Science Foundation of China (Grant nos. 20934004 and 91127046) and the National Basic Research Program of China (Grant nos. 2012CB821500 and 2010CB934500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojun Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, N., Xiao, S. et al. Thermodynamic and conformational insights into the phase transition of a single flexible homopolymer chain using replica exchange Monte Carlo method. J Mol Model 20, 2296 (2014). https://doi.org/10.1007/s00894-014-2296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2296-3

Keywords

Navigation