Skip to main content
Log in

Generalized ensemble computer simulations for structure formation of semiflexible polymers

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Over the last two decades generalized ensemble Monte Carlo computer simulation studies employing multicanonical, Wang–Landau, or replica-exchange methods have proven to be a strong numerical tool for investigations of the statistical physics of polymer chains.

After a discussion of the theoretical background of these approaches, their power will be demonstrated in two applications to coarse-grained models of semiflexible polymers, which show a rich variety of structural motifs such as hairpins, knots and twisted bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Janke and W. Paul, “Thermodynamics and structure of macromolecules from flat-histogram Monte Carlo simulations (invited review),” Soft Matter 12, 642–657 (2016).

    Article  Google Scholar 

  2. J. Zierenberg, M. Marenz, and W. Janke, “Dilute semiflexible polymers with attraction: collapse, folding and aggregation (invited review),” Polymers 8, 333–1–19 (2016).

    Article  Google Scholar 

  3. B. A. Berg and T. Neuhaus, “Multicanonical algorithms for first order phase transitions,” Phys. Lett. B 267, 249–253 (1991).

    Article  Google Scholar 

  4. B. A. Berg and T. Neuhaus, “Multicanonical ensemble: a new approach to simulate first-order phase transitions,” Phys. Rev. Lett. 68, 9–12 (1992).

    Article  Google Scholar 

  5. W. Janke, “Multicanonical simulation of the two-dimensional 7-state Potts model,” Int. J. Mod. Phys. C 03, 1137–1146 (1992).

    Article  Google Scholar 

  6. W. Janke, “Multicanonical Monte Carlo simulations,” Physica A 254, 164–178 (1998).

    Article  Google Scholar 

  7. K. Hukushima and K. Nemoto, “Exchange Monte Carlo method and application to spin glass simulations,” J. Phys. Soc. Jpn. 65, 1604–1608 (1996).

    Article  Google Scholar 

  8. F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001).

    Article  Google Scholar 

  9. F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101−1–16 (2001).

    Google Scholar 

  10. J. Zierenberg, M. Marenz, and W. Janke, “Scaling properties of a parallel implementation of the multicanonical algorithm,” Comput. Phys. Commun. 184, 1155–1160 (2013).

    Article  Google Scholar 

  11. J. Zierenberg, M. Marenz, and W. Janke, “Scaling properties of parallelized multicanonical simulations,” Phys. Proc. 53, 55–59 (2014).

    Article  Google Scholar 

  12. J. Gross, J. Zierenberg, M. Weigel, and W. Janke, “Massively parallel multicanonical simulations,” arXiv:1707.00919 (2017).

    Google Scholar 

  13. E. Bittner and W. Janke, “Free-energy barriers in the Sherrington–Kirkpatrick model,” Europhys. Lett. 74, 195–201 (2006).

    Article  MathSciNet  Google Scholar 

  14. D. H. E. Gross, Microcanonical Thermodynamics (World Scientific, Singapore, 2001).

    Book  Google Scholar 

  15. W. Janke, “Canonical versus microcanonical analysis of first-order phase transitions,” Nucl. Phys. B (Proc. Suppl. A-C) 63, 631–633 (1998).

    Article  Google Scholar 

  16. C. Junghans, M. Bachmann, and W. Janke, “Microcanonical analyses of peptide aggregation processes,” Phys. Rev. Lett. 97, 218103−1–4 (2006).

    Article  Google Scholar 

  17. S. Schnabel, D. T. Seaton, D. P. Landau, and M. Bachmann, “Microcanonical entropy inflection points: key to systematic understanding of transitions in finite systems,” Phys. Rev. E 84, 011127−1–4 (2011).

    Article  Google Scholar 

  18. P. Schierz, J. Zierenberg, and W. Janke, “First-order phase transitions in the real microcanonical ensemble,” Phys. Rev. E 94, 021301−1–5(R) (2016).

    Article  Google Scholar 

  19. J. Zierenberg, P. Schierz, and W. Janke, “Canonical free-energy barrier of particle and polymer cluster formation,” Nat. Commun. 8, 14546−1–7 (2017).

    Article  Google Scholar 

  20. M. Marenz and W. Janke, “Effect of bending stiffness on a homopolymer inside a spherical cage,” Phys. Proc. 57, 53–57 (2014).

    Article  Google Scholar 

  21. M. Marenz and W. Janke, “Knots as a topological order parameter for semiflexible polymers,” Phys. Rev. Lett. 116, 128301−1–6 (2016).

    Article  Google Scholar 

  22. W. Janke and M. Marenz, “Stable knots in the phase diagram of semiflexible polymers: a topological order parameter?,” J. Phys.: Conf. Ser. 750, 012006−1–5 (2016).

    Google Scholar 

  23. D. T. Seaton, S. Schnabel, M. Bachmann, and D. P. Landau, “Effects of stiffness on short, semiflexible homopolymer chains,” Int. J. Mod. Phys. C 23, 1240004−1–7 (2012).

    Article  Google Scholar 

  24. D. T. Seaton, S. Schnabel, D. P. Landau, and M. Bachmann, “From flexible to stiff: systematic analysis of structural phases for single semiflexible polymers,” Phys. Rev. Lett. 110, 028103−1–5 (2013).

    Article  Google Scholar 

  25. P. Virnau, “Detection and visualization of physical knots in macromolecules,” Phys. Proc. 6, 117–125 (2010).

    Article  MathSciNet  Google Scholar 

  26. L. H. Kauffman,Knots and Physics, 2nd ed. (World Scientific, Singapore, 1991).

    Book  MATH  Google Scholar 

  27. C. Junghans, M. Bachmann, and W. Janke, “Thermodynamics of peptide aggregation processes: an analysis from perspectives of three statistical ensembles,” J. Chem. Phys. 128, 085103−1–9 (2008).

    Article  Google Scholar 

  28. C. Junghans, M. Bachmann, and W. Janke, “Statistical mechanics of aggregation and crystallization for semiflexible polymers,” Europhys. Lett. 87, 40002–1–5 (2009).

    Article  Google Scholar 

  29. J. Zierenberg, M. Mueller, P. Schierz, M. Marenz, and W. Janke, “Aggregation of theta-polymers in spherical confinement,” J. Chem. Phys. 141, 114908−1–9 (2014).

    Article  Google Scholar 

  30. M. Mueller, J. Zierenberg, M. Marenz, P. Schierz, and W. Janke, “Probing the effect of density on the aggregation temperature of semi-flexible polymers in spherical confinement,” Phys. Proc. 68, 95–99 (2015).

    Article  Google Scholar 

  31. J. Zierenberg and W. Janke, “From amorphous aggregates to polymer bundles: the role of stiffness on structural phases in polymer aggregation,” Europhys. Lett. 109, 28002−1–6 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Janke.

Additional information

Submitted by L. N. Shchur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janke, W., Marenz, M. & Zierenberg, J. Generalized ensemble computer simulations for structure formation of semiflexible polymers. Lobachevskii J Math 38, 978–985 (2017). https://doi.org/10.1134/S1995080217050171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080217050171

Keywords and phrases

Navigation