Skip to main content
Log in

Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We make a high-precision Monte Carlo study of two- and three-dimensional self-avoiding walks (SAWs) of length up to 80,000 steps, using the pivot algorithm and the Karp-Luby algorithm. We study the critical exponentsv and 2Δ 4γ as well as several universal amplitude ratios; in particular, we make an extremely sensitive test of the hyperscaling relationdv = 2Δ 4γ. In two dimensions, we confirm the predicted exponentv=3/4 and the hyperscaling relation; we estimate the universal ratios <R 2 g >/<R 2 e >=0.14026±0.00007, <R 2 m >/<R 2 e >=0.43961±0.00034, and Ψ*=0.66296±0.00043 (68% confidence limits). In three dimensions, we estimatev=0.5877±0.0006 with a correctionto-scaling exponentΔ 1=0.56±0.03 (subjective 68% confidence limits). This value forv agrees excellently with the field-theoretic renormalization-group prediction, but there is some discrepancy forΔ 1. Earlier Monte Carlo estimates ofv, which were ≈0.592, are now seen to be biased by corrections to scaling. We estimate the universal ratios <R 2 g >/<R 2 e >=0.1599±0.0002 and Ψ*=0.2471±0.0003; since Ψ*>0, hyperscaling holds. The approach to Ψ* is from above, contrary to the prediction of the two-parameter renormalization-group theory. We critically reexamine this theory, and explain where the error lies. In an appendix, we prove rigorously (modulo some standard scaling assumptions) the hyperscaling relationdv = 2Δ 4γ for two-dimensional SAWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Madras and G. Slade,The Self-Avoiding Walk (Birkhäuser, Boston, 1993).

    Google Scholar 

  2. P. G. de Gennes,Phys. Lett. A 38:339 (1972).

    Google Scholar 

  3. J. des Cloizeaux,J. Phys. (Paris)36:281 (1975).

    Google Scholar 

  4. M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, R. Duplessix, C. Picot, and P. G. de Gennes,Macromolecules 8:804 (1975).

    Google Scholar 

  5. V. J. Emery,Phys. Rev. B 11:239 (1975).

    Google Scholar 

  6. C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B 215[FS7]:209 (1983).

    Google Scholar 

  7. R. Fernández, J. Fröhlich, and A. D. Sokal,Random Walks, Critical Phenomena, and Trivality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  8. M. Lal,Mol. Phys. 17:57 (1969).

    Google Scholar 

  9. B. MacDonald, N. Jan, D. L. Hunter, and M. O. Steinitz,J. Phys. A: Math. Gen. 18:2627 (1985).

    Google Scholar 

  10. N. Madras and A. D. Sokal,J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  11. K. F. Freed,Renormalization Group Theory of Macromolecules (Wiley, New York, 1987).

    Google Scholar 

  12. J. des Cloizeaux and G. Jannink,Polymers in Solution: Their Modelling and Structure (Oxford University Press, Oxford, 1990).

    Google Scholar 

  13. B. G. Nickel,Macromolecules 24:1358 (1991).

    Google Scholar 

  14. A. D. Sokal,Europhys. Lett. 27:661 (1994).

    Google Scholar 

  15. A. D. Sokal, Fundamental problems in the static scaling behavior of high-molecularweight polymers in dilute solution I. Critique of two-parameter theories, In preparation.

  16. B. Widom,J. Chem. Phys. 43:3892 (1965).

    Google Scholar 

  17. M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).

    Google Scholar 

  18. G. Stell,J. Chem. Phys. 51:2037 (1969).

    Google Scholar 

  19. N. S. Snider,J. Chem. Phys. 54:4587 (1971).

    Google Scholar 

  20. B. Widom,Physica 73:107 (1974).

    Google Scholar 

  21. M. E. Fisher, inCollective Properties of Physical Systems, B. Lundqvist and S. Lundqvist, eds. (Academic Press, New York, 1974).

    Google Scholar 

  22. C. K. Hall,J. Stat. Phys. 13:157 (1975).

    Google Scholar 

  23. T. Hara and G. Slade,Commun. Math. Phys. 147:101 (1992).

    Google Scholar 

  24. T. Hara and G. Slade,Rev. Math. Phys. 4:235 (1992).

    Google Scholar 

  25. T. Hara and G. Slade,Commun. Math. Phys. 128:333 (1990).

    Google Scholar 

  26. T. Hara,Prob. Theory Related Fields 86:337 (1990).

    Google Scholar 

  27. W. J. Camp, D. M. Saul, J. P. Van Dyke, and M. Wortis,Phys. Rev. B 14: 3990 (1976).

    Google Scholar 

  28. G. A. Baker Jr.,Phys. Rev. B 15:1552 (1977).

    Google Scholar 

  29. B. G. Nickel and B. Sharpe,J. Phys. A 12:1819 (1979).

    Google Scholar 

  30. J. J. Rehr,J. Phys. A 12:L179 (1979).

    Google Scholar 

  31. J. Zinn-Justin,J. Phys. (Paris)40:969 (1979).

    Google Scholar 

  32. B. Nickel,Physica 106A:48 (1981).

    Google Scholar 

  33. B. G. Nickel, inPhase Transitions, M. Lévy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982).

    Google Scholar 

  34. R. Roskies,Phys. Rev. B 23:6037 (1981).

    Google Scholar 

  35. R. Z. Roskies,Phys. Rev. B 24:5305 (1981).

    Google Scholar 

  36. J. Zinn-Justin,J. Phys. (Paris)42:783 (1981).

    Google Scholar 

  37. G. A. Baker jr. and J. M. Kincaid,J. Stat. Phys. 24:469 (1981).

    Google Scholar 

  38. J.-H. Chen, M. E. Fisher, and B. G. Nickel,Phys. Rev. Lett. 48:630 (1982).

    Google Scholar 

  39. J. Adler, M. Moshe, and V. Privman,Phys. Rev. B 26:3958 (1982).

    Google Scholar 

  40. M. Ferer and M. J. Velgakis,Phys. Rev. B 27:2839 (1983).

    Google Scholar 

  41. M. E. Fisher and J.-H. Chen,J. Phys. (Paris)46:1645 (1985).

    Google Scholar 

  42. A. J. Guttmann,Phys. Rev. B 33:5089 (1986).

    Google Scholar 

  43. R. Schrader and E. Tränkle,J. Stat. Phys. 25:269 (1981).

    Google Scholar 

  44. B. A. Freedman and G. A. Baker Jr.,J. Phys. A 15:L715 (1982).

    Google Scholar 

  45. M. N. Barber, R. B. Pearson, D. Toussaint, and J. L. Richardson,Phys. Rev. B 32: 1720 (1985).

    Google Scholar 

  46. K. Binder, M. Nauenberg, V. Privman, and A. P. Young,Phys. Rev. B 31:1498 (1985).

    Google Scholar 

  47. A. Hoogland, A. Compagner, and H. W. J. Blöte,Physica A 132:593 (1985).

    Google Scholar 

  48. G. A. Baker Jr. and N. Kawashima, Renormalized coupling constant for the three dimensional Ising model, Los Alamos preprint (1994).

  49. M. Aizenman,Commun. Math. Phys. 86:1 (1982).

    Google Scholar 

  50. J. Glimm and A. Jaffe,Ann. Inst. Henri Poincaré A 22:97 (1975).

    Google Scholar 

  51. R. Schrader,Phys. Rev. B 14:172 (1976).

    Google Scholar 

  52. R. Schrader,Commun. Math. Phys. 49:131 (1976).

    Google Scholar 

  53. A. D. Sokal,Ann. Inst. Henri Poincaré A 37:317 (1982).

    Google Scholar 

  54. G. A. Baker Jr., inPhase Transitions and Critical Phenomena, Vol. 9, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1984).

    Google Scholar 

  55. M. E. Fisher, inRenormalization Group in Critical Phenomena and Quantum Fields, J. D. Gunton and M. S. Green, eds. (Temple University, Philadelphia, 1974).

    Google Scholar 

  56. F. J. Wegner and E. K. Riedel,Phys. Rev. B 7:248 (1973).

    Google Scholar 

  57. S.-K. Ma,Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  58. D. J. Amit and L. Peliti,Ann. Phys. 140:207 (1982).

    Google Scholar 

  59. M. E. Fisher, inCritical Phenomena (Stellenbosh 1982), F. J. W. Hahne, ed. (Springer-Verlag, Berlin, 1983), pp. 1–139.

    Google Scholar 

  60. A. C. D. van Enter, R. Fernández, and A. D. Sokal,J. Stat. Phys. 72:879 (1993).

    Google Scholar 

  61. K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 99:197 (1985).

    Google Scholar 

  62. K. Gawedzki and A. Kupiainen,Nucl. Phys. B 257[FS14]:474 (1985).

    Google Scholar 

  63. K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 102:1 (1985).

    Google Scholar 

  64. J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor,Commun. Math. Phys. 103: 67 (1986).

    Google Scholar 

  65. K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 89:191 (1983).

    Google Scholar 

  66. K. Gawedzki and A. Kupiainen,J. Stat. Phys. 35:267 (1984).

    Google Scholar 

  67. K. Gawedzki and A. Kupiainen,Commun. Math. Phys. 106:533 (1986).

    Google Scholar 

  68. G. Felder,Commun. Math. Phys. 102:139 (1985).

    Google Scholar 

  69. T. Niemeijer and J. M. J. van Leuuwen, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).

    Google Scholar 

  70. R. H. Swendsen, inPhase Transitions, M. Lévy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982).

    Google Scholar 

  71. E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).

    Google Scholar 

  72. D. S. Gaunt and A. J. Guttmann, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and A. J. Green, eds. (Academic Press, New York, 1974).

    Google Scholar 

  73. A. J. Guttmann, inPhase Transitions and Critical Phenomena, Vol. 13, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1989).

    Google Scholar 

  74. J. Adler, M. Moshe, and V. Privman, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (Israel Physical Society, 1983).

  75. V. Privman,J. Phys. A. 16:3097 (1983).

    Google Scholar 

  76. M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).

    Google Scholar 

  77. J. L. Cardy, ed.,Finite-Size Scaling (North-Holland, Amsterdam, 1988).

    Google Scholar 

  78. V. Privman, ed.,Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  79. A. D. Sokal, Monte Carlo methods in statistical mechanics: Foundations and new algorithms, Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne (June 1989).

  80. A. D. Sokal,Nucl. Phys. B (Proc. Suppl.) 20:55 (1991).

    Google Scholar 

  81. A. D. Sokal, inQuantum Fields on the Computer, M. Creutz, ed. (World Scientific, Singapore, 1992).

    Google Scholar 

  82. S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal, Extrapolating Monte Carlo simulations to infinite volume: finite-size scaling at ζ/L≫1,Phys. Rev. Lett., to appear.

  83. A. D. Sokal, inMonte Carlo and Molecular Dynamics Simulations in Polymer Science, K. Binder, ed. (Oxford University Press, Oxford, 1995).

    Google Scholar 

  84. A. Baumgärtner and K. Binder,J. Chem. Phys. 71:2541 (1979).

    Google Scholar 

  85. S. F. Edwards,Proc. Phys. Soc. Lond. 85:613 (1965).

    Google Scholar 

  86. S. R. S. Varadhan, Appendix to K. Symanzik inLocal Quantum Theory, R. Jost, ed. (Academic Press, New York, 1969).

    Google Scholar 

  87. J. Westwater,Commun. Math. Phys. 72:131 (1980).

    Google Scholar 

  88. J. Westwater,Commun. Math. Phys. 84:459 (1982).

    Google Scholar 

  89. A. Bovier, G. Felder, and J. Fröhlich,Nucl. Phys. B 230[FS10]:119 (1984).

    Google Scholar 

  90. V. Privman, P. C. Hohenberg, and A. Aharony, inPhase Transitions and Critical Phenomena, Vol. 14, C. Domb and J. L. Lebowitz, eds. (Academic Press, San Diego, 1991).

    Google Scholar 

  91. M. Muthukumar and B. G. Nickel,J. Chem. Phys. 80:5839 (1984).

    Google Scholar 

  92. J. des Cloizeaux, R. Conte, and G. Jannink,J. Phys. Lett. (Paris)46:L-595 (1985).

    Google Scholar 

  93. M. Muthukumar and B. G. Nickel,J. Chem. Phys. 86:460 (1987).

    Google Scholar 

  94. A. J. Barrett and B. G. Nickel, Private communication.

  95. H. Fujita and T. Norisuye,Macromolecules 18:1637 (1985).

    Google Scholar 

  96. K. Huber and W. H. Stockmayer,Macromolecules 20:1400 (1987).

    Google Scholar 

  97. H. Fujita,Macromolecules 21:179 (1988).

    Google Scholar 

  98. H. Fujita,Polymer Solutions (Elsevier, Amsterdam, 1990).

    Google Scholar 

  99. A. J. Liu and M. E. Fisher,J. Stat. Phys. 58:431 (1990).

    Google Scholar 

  100. T. Hara, G. Slade, and A. D. Sokal,J. Stat. Phys. 72:479 (1993).

    Google Scholar 

  101. J. L. Cardy and A. J. Guttmann,J. Phys. A 26:2485 (1993).

    Google Scholar 

  102. G. Slade,Commun. Math. Phys. 110:661 (1987).

    Google Scholar 

  103. G. Slade,Ann. Prob. 17:91 (1989).

    Google Scholar 

  104. G. Slade,J. Phys. A: Math. Gen. 21:L417 (1988).

    Google Scholar 

  105. G. E. Uhlenbeck and G. W. Ford, inStudies in Statistical Mechanics, Vol. I, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962).

    Google Scholar 

  106. J. des Cloizeaux, Private communication cited in E. Brézin, inOrder and Fluctuation in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nichols, G. Dewel, and J. W. Turner, eds. (Wiley-Interscience, New York, 1981).

    Google Scholar 

  107. J. C. LeGuillou and J. Zinn-Justin,Phys. Rev. B 21:3976 (1980).

    Google Scholar 

  108. J. C. LeGuillou and J. Zinn-Justin,J. Phys. Lett. 46:L-137 (1985).

    Google Scholar 

  109. J. C. LeGuillou and J. Zinn-Justin,J. Phys. (Paris)50:1365 (1989).

    Google Scholar 

  110. D. B. Murray and B. G. Nickel, Revised estimates for critical exponents for the continuumn-vector model in 3 dimensions, University of Guelph preprint (1991).

  111. B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982).

    Google Scholar 

  112. B. Nienhuis,J. Stat. Phys. 34:731 (1984).

    Google Scholar 

  113. D. S. McKenzie and C. Domb,Proc. Phys. Soc. Lond. 92:632 (1967).

    Google Scholar 

  114. F. J. Wegner,Phys. Rev. B 5:4529 (1972).

    Google Scholar 

  115. H. E. Staneley,Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).

    Google Scholar 

  116. N. Madras, A. Orlitsky, and L. A. Shepp,J. Stat. Phys. 58:159 (1990).

    Google Scholar 

  117. G. Zifferer,Macromolecules 23:3166 (1990).

    Google Scholar 

  118. N. Eizenberg and J. Klafter,J. Chem. Phys. 99:3976 (1993).

    Google Scholar 

  119. D. E. Knuth,The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts, 1973), Section 6.4.

    Google Scholar 

  120. T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms (MIT Press/ McGraw-Hill, Cambridge, Massachusetts/New York, 1990), Chapter 12.

    Google Scholar 

  121. K. Suzuki,Bull. Chem. Soc. Japan 41:538 (1968).

    Google Scholar 

  122. G. Zifferer,Mol. Simul. 6:103 (1991).

    Google Scholar 

  123. S. Redner and P. J. Reynolds,J. Phys. A 14:2679 (1981).

    Google Scholar 

  124. A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).

    Google Scholar 

  125. A. J. Barrett,Macromolecules 18:196 (1985), Section 3.

    Google Scholar 

  126. R. M. Karp and M. Luby, In24th IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1983), pp. 56–64.

    Google Scholar 

  127. R. M. Karp, M. Luby, and N. Madras,J. Algorithms 10:429 (1989).

    Google Scholar 

  128. S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975).

    Google Scholar 

  129. S. Caracciolo, A. J. Guttmann, B. Li, A. Pelissetto, and A. D. Sokal, Correction-to-scaling exponents for two-dimensional self-avoiding walks, in preparation.

  130. D. C. Rapaport,J. Phys. A 18:L39 (1985).

    Google Scholar 

  131. S. Caracciolo, A. Pelissetto, and A. D. Sokal,J. Phys. A 23:L969 (1990).

    Google Scholar 

  132. A. J. Barrett, M. Mansfield, and B. C. Benesch,Macromolecules 24:1615 (1991).

    Google Scholar 

  133. J. L. Cardy and H. Saleur,J. Phys. A 22:L601 (1989).

    Google Scholar 

  134. A. J. Guttmann, S. Merrilees, and A. D. Sokal, Unpublished (1985).

  135. D. C. Rapaport,J. Phys. A 18:113 (1985).

    Google Scholar 

  136. J. Dayantis and J.-F. Palierne,J. Chem. Phys. 95:6088 (1991).

    Google Scholar 

  137. L. A. Johnson, A. Monge, and R. A. Friesner,J. Chem. Phys. 97:9355 (1992).

    Google Scholar 

  138. F. Shanes and B. G. Nickel, Calculation of the radius of gyration for a linear flexible polymer chain with excluded volume interaction,J. Chem. Phys., to appear.

  139. J. Dayantis and J.-F. Palierne,Phys. Rev. B 49:3217 (1994).

    Google Scholar 

  140. A. J. Guttmann,J. Phys. A 22:2807 (1989).

    Google Scholar 

  141. B. G. Nickel,Physica A 177:189 (1991).

    Google Scholar 

  142. K. E. Newman and E. K. Riedel,Phys. Rev. B 30:6615 (1984).

    Google Scholar 

  143. A. D. Sokal, Fundamental problems in the static scaling behavior of high-molecularweight polymers in dilute solution II. Critical review of the experimental literature, In preparation.

  144. A. Yamamoto, M. Fujii, G. Tanaka, and H. Yamakawa,Polymer J. 2:799 (1971).

    Google Scholar 

  145. M. Fukuda, M. Fukutomi, Y. Kato, and T. Hashimoto,J. Polymer Sci.: Polymer Phys. Ed. 12:871 (1974).

    Google Scholar 

  146. Y. Miyaki, Y. Einaga, and H. Fujita,Macromolecules 11:1180 (1978).

    Google Scholar 

  147. J.-C. Leguillou and J. Zinn-Justin,Phys. Rev. Lett. 39:95 (1977).

    Google Scholar 

  148. J. P. Cotton,J. Phys. Lett. (Paris)41:L-231 (1980).

    Google Scholar 

  149. H. Utiyama, S. Utsumi, Y. Tsunashima, and M. Kurata,Macromolecules 11:506 (1978).

    Google Scholar 

  150. B. Appelt and C. Meyerhoff,Macromolecules 13:657 (1980).

    Google Scholar 

  151. H. R. Haller, C. Destor, and D. S. Cannell,Rev. Sci. Instrum. 54:973 (1983).

    Google Scholar 

  152. B. Chu, R. Xu, T. Maeda, and H. S. Dhadwal,Rev. Sci. Instrum. 59:716 (1988).

    Google Scholar 

  153. K. B. Strawbridge, F. R. Hallett, and J. Watton,Can. J. Appl. Spectrosc. 36:53 (1991).

    Google Scholar 

  154. A. D. Sokal, Optimal statistical analysis of static light-scattering data from dilute polymer solutions, In preparation.

  155. M. Benhamou and G. Mahoux,J. Phys. Lett. (Paris)46:L-689 (1985).

    Google Scholar 

  156. C. Domb and F. T. Hioe,J. Chem. Phys. 51:1915 (1969).

    Google Scholar 

  157. M. van Prooyen and B. G. Nickel, The second virial coefficient for self-avoiding walks on a lattice, In preparation.

  158. P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953).

    Google Scholar 

  159. H. Yamakawa,Modern Theory of Polymer Solutions (Harper and Row, New York, 1971).

    Google Scholar 

  160. P. G. DeGennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  161. C. Domb and A. J. Barrett,Polymer 17:179 (1976).

    Google Scholar 

  162. J. F. Douglas and K. F. Freed,Macromolecules 18:201 (1985).

    Google Scholar 

  163. J. F. Douglas and K. F. Freed,J. Phys. Chem. 88:6613 (1984).

    Google Scholar 

  164. Z. Y. Chen and J. Noolandi,J. Chem. Phys. 96:1540 (1992).

    Google Scholar 

  165. Z. Y. Chen and J. Noolandi,Macromolecules 25:4978 (1992).

    Google Scholar 

  166. B. Krüger and L. Schäfer,J. Phys. I (Paris)4:757 (1994).

    Google Scholar 

  167. L. Schäfer,Phys. Rev. E 50:3517 (1994).

    Google Scholar 

  168. C. Bagnuls and C. Bervillier,Phys. Rev. B 41:402 (1990).

    Google Scholar 

  169. K. G. Wilson and J. Kogut,Phys. Rev. 12C:75 (1974).

    Google Scholar 

  170. K. Gawędzki and A. Kupiainen, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], Part I, K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), pp. 185–293.

    Google Scholar 

  171. J. Polchinski,Nucl. Phys. B 231:269 (1984).

    Google Scholar 

  172. J. Hughes and J. Liu,Nucl. Phys. B 307:183 (1988).

    Google Scholar 

  173. S. Weinberg,Phys. Rev. D 8:3497 (1973).

    Google Scholar 

  174. J. C. Collins and A. J. Macfarlane,Phys. Rev. D 10:1201 (1974).

    Google Scholar 

  175. S. W. MacDowell,Phys. Rev. D 12:1089 (1975).

    Google Scholar 

  176. B. Duplantier,J. Phys. (Paris)43:991 (1982).

    Google Scholar 

  177. B. Duplantier,J. Chem. Phys. 86:4233 (1987).

    Google Scholar 

  178. B. Duplantier,Phys. Rev. A 38:3647 (1988).

    Google Scholar 

  179. C. Domb and G. S. Joyce,J. Phys. C 5:956 (1972).

    Google Scholar 

  180. B. Duplantier and H. Saleur,Phys. Rev. Lett. 59:539 (1987).

    Google Scholar 

  181. S. Caracciolo, G. Ferraro, A. Pelissetto, and A. D. Sokal, Work in progress.

  182. E. Orlandini, M. C. Tesi, and S. G. Whittington, Private communication.

  183. G. Tanaka and K. Šolc,Macromolecules 15:791 (1982).

    Google Scholar 

  184. J. des Cloizeaux,J. Phys. (Paris)42:635 (1981).

    Google Scholar 

  185. J. F. Douglas and K. F. Freed,Macromolecules 17:1854 (1984).

    Google Scholar 

  186. S. Sternberg,Am. J. Math. 79:809 (1957);80:623 (1958);81:578 (1959).

    Google Scholar 

  187. V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed. (Springer-Verlag, Berlin, 1988), Chapter 5.

    Google Scholar 

  188. R. de la Llave, Invariant manifolds associated to non-resonant spectral subspaces, University of Texas preprint (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Madras, N. & Sokal, A.D. Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks. J Stat Phys 80, 661–754 (1995). https://doi.org/10.1007/BF02178552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02178552

Key Words

Navigation