Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Coarse-Grained and Hybrid Simulations of Nanostructures

  • Richard Gowers
  • Paola Carbone
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-6178-0_100940-2

Synonyms

Definition

In computational chemistry coarse-grained (CG) models are defined as molecular models where some details (i.e., degrees of freedom) of the original chemical structure have been removed. The resulting models are a coarser description of the chemical systems compared with the original ones and can then be used to perform either molecular dynamics or Monte Carlo simulations [1]. The reduction of the models’ degrees of freedom enables the simulation of systems whose size is comparable with that of the experimental ones and the timescale spanned by these simulations can reach microseconds.

Overview

Computer modeling is a powerful technique to gain molecular level details of chemical systems under different physical conditions and enables to relate macroscopic observations with changes in the chemical and physical state of the system. However, all modeling techniques rely on computer hardware, and therefore their use is...

Keywords

Dissipative Particle Dynamic Dissipative Particle Dynamic Simulation Dissipative Particle Dynamic Particle Interphase Thickness Virtual Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2002)Google Scholar
  2. 2.
    Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein. Chem. 66, 27–85 (2003)CrossRefGoogle Scholar
  3. 3.
    Karimi-Varzaneh, H., van der Vegt, N.F.A., Müller-Plathe, F., Carbone, P.: How good are coarse-grained polymer models? A comparison for atactic polystyrene. ChemPhysChem 13, 3428 (2012)CrossRefGoogle Scholar
  4. 4.
    Voth, G.A.: Coarse-Graining of Condensed Phase and Biomolecular Systems, CRC edn. Taylor and Francis, Boca Raton (2008)Google Scholar
  5. 5.
    Carbone, P., Avendaño, C.: Coarse-grained methods for polymeric materials: Enthalpy and entropy driven models. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4(1), 62–70 (2014)Google Scholar
  6. 6.
    Noid, W.G.: Perspective: Coarse-grained models for biomolecular systems. J. Chem. Phys. 7, 139 (2013)Google Scholar
  7. 7.
    Lyubartsev, A.P., Laaksonen, A.: Calculation of the effective interaction potentials from radial distribution functions – a reverse Monte-Carlo approach. Phys. Rev. E 52(4), 3730–3737 (1995)CrossRefGoogle Scholar
  8. 8.
    Baschnagel, J., Binder, K., Doruker, P., Gusev, A.A., Hahn, O., Kremer, K., Mattice, W.L., Müller-Plathe, F., Murat, M., Paul, W., et al.: Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives. Adv. Polym. Sci. 152, 41–156 (2000)CrossRefGoogle Scholar
  9. 9.
    Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)CrossRefGoogle Scholar
  10. 10.
    Shinoda, W., Devane, R., Klein, M.L.: Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul. 33(1–2), 27–36 (2007)CrossRefGoogle Scholar
  11. 11.
    Avendaño, C., Lafitte, T., Galindo, A., Adjiman, C.S., Jackson, G., Müller, E.A.: SAFT-gamma force field for the simulation of molecular fluids. 1. A single-site coarse grained model of Carbon Dioxide. J. Phys. Chem. B 115(38), 11154–11169 (2011)CrossRefGoogle Scholar
  12. 12.
    Ercolessi, F., Adams, J.B.: Interatomic potentials from 1st-principles calculations – the force-matching method. Europhys. Lett. 26(8), 583–588 (1994)CrossRefGoogle Scholar
  13. 13.
    Noid, W.G., Chu, J.W., Ayton, G.S., Krishna, V., Izvekov, S., Voth, G.A., Das, A., Andersen, H.C.: The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128(24), 244114 (2008)CrossRefGoogle Scholar
  14. 14.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79 (1951)CrossRefGoogle Scholar
  15. 15.
    Shell, M.S.: The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 129, 144108 (2008)CrossRefGoogle Scholar
  16. 16.
    Groot, R.D., Warren, P.B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997)CrossRefGoogle Scholar
  17. 17.
    Espanol, P.: Dissipative particle dynamics. In: Handbook of Materials Modeling, pp. 2503–2512. Springer, Dordrecht (2005)CrossRefGoogle Scholar
  18. 18.
    Altland, A., Simons, B.D.: Condensed Matter Field Theory, 2nd edn. Cambridge University Press, Leiden (2010)CrossRefGoogle Scholar
  19. 19.
    Alexandridis, P., Lindman, B.: Amphiphilic Block Copolymers Self-Assembly and Applications. Elsevier, Amsterdam (2000). ISBN 978-0-444-82441-7Google Scholar
  20. 20.
    Ortiz, V., Nielsen, S.O., Discher, D.E., Klein, M.L., Lipowsky, R., Shillcock, J.: Dissipative particle dynamics simulations of polymersomes. J. Phys. Chem. B 109, 17708–17714 (2005)CrossRefGoogle Scholar
  21. 21.
    Nawaz, S., Carbone, P.: Coarse-graining poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers using the MARTINI force field. J. Phys. Chem. B 118, 1648–1659 (2014)CrossRefGoogle Scholar
  22. 22.
    Rogers, R.D., Seddon, K.R.: Ionic Liquids, Science 302, 792–793 (2003)Google Scholar
  23. 23.
    Wang, Y.T., Voth, G.A.: Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 127, 12192–12193 (2005)CrossRefGoogle Scholar
  24. 24.
    Karimi-Varzaneh, H., Muller-Plathe, F., Balasubramanian, S., Carbone, P.: Studying long-time dynamics of imidazolium-based ionic liquids with a systematically coarse-grained model. Phys. Chem. Chem. Phys. 12, 4714–4724 (2010)CrossRefGoogle Scholar
  25. 25.
    Johnston, K., Harmandaris, V.: Hierarchical multiscale modeling of polymer–solid interfaces: atomistic to coarse-grained description and structural and conformational properties of polystyrene–gold systems. Macromolecules 46, 5741 (2013)CrossRefGoogle Scholar
  26. 26.
    Abrams, F.C., Delle Site, L., Kremer, K.: Dual-resolution coarse-grained simulation of the bisphenol-A-polycarbonate/nickel interface. Phys. Rev. E 67, 21807 (2003)CrossRefGoogle Scholar
  27. 27.
    Rzepiela, A.J., Louhivuori, M., Peter, C., Marrink, S.J.: Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys. Chem. Chem. Phys. 13, 10437–10448 (2011)CrossRefGoogle Scholar
  28. 28.
    Di Pasquale, N., Marchisio, D., Carbone, P.: Mixing atoms and coarse-grained beads in modelling polymer melts. J. Chem. Phys. 137, 164111 (2012)CrossRefGoogle Scholar
  29. 29.
    Praprotnik, M., Delle Site, L., Kremer, K.: Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008)CrossRefGoogle Scholar
  30. 30.
    Müller, M., de Pablo, J.J.: Computational approaches for the dynamics of structure formation in self-assembling polymeric materials. Annu. Rev. Mater. Res. 43, 1–34 (2013)CrossRefGoogle Scholar
  31. 31.
    Daoulas, K.C., Müller, M., de Pablo, J.J., Nealey, P.F., Smith, G.D.: Morphology of multi-component polymer systems: single chain in mean field simulation studies. Soft Matter 2, 573–583 (2006)CrossRefGoogle Scholar
  32. 32.
    Milano, G., Kawakatsu, T.: Hybrid particle-field molecular dynamics simulations for dense polymer systems. J. Chem. Phys. 130, 214106 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK