Skip to main content

Coarse-Grained and Hybrid Simulations of Nanostructures

Encyclopedia of Nanotechnology
  • 84 Accesses

Synonyms

Mesoscopic simulations; Multiscale simulations

Definition

In computational chemistry coarse-grained (CG) models are defined as molecular models where some details (i.e., degrees of freedom) of the original chemical structure have been removed. The resulting models are a coarser description of the chemical systems compared with the original ones and can then be used to perform either molecular dynamics or Monte Carlo simulations [1]. The reduction of the models’ degrees of freedom enables the simulation of systems whose size is comparable with that of the experimental ones and the timescale spanned by these simulations can reach microseconds.

Overview

Computer modeling is a powerful technique to gain molecular level details of chemical systems under different physical conditions and enables to relate macroscopic observations with changes in the chemical and physical state of the system. However, all modeling techniques rely on computer hardware, and therefore their use is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2002)

    Google Scholar 

  2. Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein. Chem. 66, 27–85 (2003)

    Article  Google Scholar 

  3. Karimi-Varzaneh, H., van der Vegt, N.F.A., Müller-Plathe, F., Carbone, P.: How good are coarse-grained polymer models? A comparison for atactic polystyrene. ChemPhysChem 13, 3428 (2012)

    Article  Google Scholar 

  4. Voth, G.A.: Coarse-Graining of Condensed Phase and Biomolecular Systems, CRC edn. Taylor and Francis, Boca Raton (2008)

    Google Scholar 

  5. Carbone, P., Avendaño, C.: Coarse-grained methods for polymeric materials: Enthalpy and entropy driven models. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4(1), 62–70 (2014)

    Google Scholar 

  6. Noid, W.G.: Perspective: Coarse-grained models for biomolecular systems. J. Chem. Phys. 7, 139 (2013)

    Google Scholar 

  7. Lyubartsev, A.P., Laaksonen, A.: Calculation of the effective interaction potentials from radial distribution functions – a reverse Monte-Carlo approach. Phys. Rev. E 52(4), 3730–3737 (1995)

    Article  Google Scholar 

  8. Baschnagel, J., Binder, K., Doruker, P., Gusev, A.A., Hahn, O., Kremer, K., Mattice, W.L., Müller-Plathe, F., Murat, M., Paul, W., et al.: Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives. Adv. Polym. Sci. 152, 41–156 (2000)

    Article  Google Scholar 

  9. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)

    Article  Google Scholar 

  10. Shinoda, W., Devane, R., Klein, M.L.: Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul. 33(1–2), 27–36 (2007)

    Article  Google Scholar 

  11. Avendaño, C., Lafitte, T., Galindo, A., Adjiman, C.S., Jackson, G., Müller, E.A.: SAFT-gamma force field for the simulation of molecular fluids. 1. A single-site coarse grained model of Carbon Dioxide. J. Phys. Chem. B 115(38), 11154–11169 (2011)

    Article  Google Scholar 

  12. Ercolessi, F., Adams, J.B.: Interatomic potentials from 1st-principles calculations – the force-matching method. Europhys. Lett. 26(8), 583–588 (1994)

    Article  Google Scholar 

  13. Noid, W.G., Chu, J.W., Ayton, G.S., Krishna, V., Izvekov, S., Voth, G.A., Das, A., Andersen, H.C.: The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128(24), 244114 (2008)

    Article  Google Scholar 

  14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79 (1951)

    Article  Google Scholar 

  15. Shell, M.S.: The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 129, 144108 (2008)

    Article  Google Scholar 

  16. Groot, R.D., Warren, P.B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997)

    Article  Google Scholar 

  17. Espanol, P.: Dissipative particle dynamics. In: Handbook of Materials Modeling, pp. 2503–2512. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  18. Altland, A., Simons, B.D.: Condensed Matter Field Theory, 2nd edn. Cambridge University Press, Leiden (2010)

    Book  Google Scholar 

  19. Alexandridis, P., Lindman, B.: Amphiphilic Block Copolymers Self-Assembly and Applications. Elsevier, Amsterdam (2000). ISBN 978-0-444-82441-7

    Google Scholar 

  20. Ortiz, V., Nielsen, S.O., Discher, D.E., Klein, M.L., Lipowsky, R., Shillcock, J.: Dissipative particle dynamics simulations of polymersomes. J. Phys. Chem. B 109, 17708–17714 (2005)

    Article  Google Scholar 

  21. Nawaz, S., Carbone, P.: Coarse-graining poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers using the MARTINI force field. J. Phys. Chem. B 118, 1648–1659 (2014)

    Article  Google Scholar 

  22. Rogers, R.D., Seddon, K.R.: Ionic Liquids, Science 302, 792–793 (2003)

    Google Scholar 

  23. Wang, Y.T., Voth, G.A.: Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 127, 12192–12193 (2005)

    Article  Google Scholar 

  24. Karimi-Varzaneh, H., Muller-Plathe, F., Balasubramanian, S., Carbone, P.: Studying long-time dynamics of imidazolium-based ionic liquids with a systematically coarse-grained model. Phys. Chem. Chem. Phys. 12, 4714–4724 (2010)

    Article  Google Scholar 

  25. Johnston, K., Harmandaris, V.: Hierarchical multiscale modeling of polymer–solid interfaces: atomistic to coarse-grained description and structural and conformational properties of polystyrene–gold systems. Macromolecules 46, 5741 (2013)

    Article  Google Scholar 

  26. Abrams, F.C., Delle Site, L., Kremer, K.: Dual-resolution coarse-grained simulation of the bisphenol-A-polycarbonate/nickel interface. Phys. Rev. E 67, 21807 (2003)

    Article  Google Scholar 

  27. Rzepiela, A.J., Louhivuori, M., Peter, C., Marrink, S.J.: Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys. Chem. Chem. Phys. 13, 10437–10448 (2011)

    Article  Google Scholar 

  28. Di Pasquale, N., Marchisio, D., Carbone, P.: Mixing atoms and coarse-grained beads in modelling polymer melts. J. Chem. Phys. 137, 164111 (2012)

    Article  Google Scholar 

  29. Praprotnik, M., Delle Site, L., Kremer, K.: Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008)

    Article  Google Scholar 

  30. Müller, M., de Pablo, J.J.: Computational approaches for the dynamics of structure formation in self-assembling polymeric materials. Annu. Rev. Mater. Res. 43, 1–34 (2013)

    Article  Google Scholar 

  31. Daoulas, K.C., Müller, M., de Pablo, J.J., Nealey, P.F., Smith, G.D.: Morphology of multi-component polymer systems: single chain in mean field simulation studies. Soft Matter 2, 573–583 (2006)

    Article  Google Scholar 

  32. Milano, G., Kawakatsu, T.: Hybrid particle-field molecular dynamics simulations for dense polymer systems. J. Chem. Phys. 130, 214106 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Gowers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gowers, R., Carbone, P. (2015). Coarse-Grained and Hybrid Simulations of Nanostructures. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100940-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100940-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Coarse-Grained and Hybrid Simulations of Nanostructures
    Published:
    26 December 2015

    DOI: https://doi.org/10.1007/978-94-007-6178-0_100940-2

  2. Original

    Coarse-Grained and Hybrid Simulations of Nanostructures
    Published:
    14 May 2015

    DOI: https://doi.org/10.1007/978-94-007-6178-0_100940-1