Skip to main content

Dissipative Particle Dynamics

  • Chapter
Handbook of Materials Modeling

Abstract

In order to simulate a complex fluid like a polymeric or colloidal fluid, a molecular dynamics simulation is not very useful. The long time and space scales involved in the mesoscopic dynamics of large macromolecules or colloidal particles as compared with molecular scales imply to follow an exceedingly large number of molecules during exceedingly large times. On the other hand, at these long scales, molecular details only show up in a rather coarse form, and the question arises if it is possible to deal with coarse-grained entities that reproduce the mesoscopic dynamics correctly. Dissipative particle dynamics (DPD) is a fruitful modeling attempt in that direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Hoogerbrugge and J.M.V.A. Koelman, “Simulating microscopic hydrodynamics phenomena with dissipative particle dynamics”, Europhys. Lett., 19(3), 155–160, 1992.

    Article  ADS  Google Scholar 

  2. P. Espanol and P. Warren, “Statistical mechanics of dissipative particle dynamics”, Europhys. Lett., 30, 191, 1995.

    Article  ADS  Google Scholar 

  3. P. Espanol, “Hydrodynamics from dissipative particle dynamics”, Phys. Rev. E, 52, 1734, 1995.

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Marsh, G. Backx, and M.H. Ernst, “Static and dynamic properties of dissipative particle dynamics”, Phys. Rev. E, 56, 1976, 1997.

    Article  ADS  Google Scholar 

  5. P.B. Warren, “Dissipative particle dynamics”, Curr. Opinion Colloid Interface Sci, 3, 620, 1998.

    Article  Google Scholar 

  6. J.M.V.A. Koelman and P.J. Hoogerbrugge, “Dynamic simulations of hard-sphere suspensions under steady shear”, Europhys. Lett., 21, 363–368, 1993.

    Article  ADS  Google Scholar 

  7. E.S. Boek, P.V. Coveney, H.N.W. Lekkerkerker, and P. van der Schoot, “Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics”, Phys. Rev. E, 55(3), 3124–3133, 1997.

    Article  ADS  Google Scholar 

  8. J.R. Melrose, J.H. van Vliet, and R.C. Ball, “Continuous shear thickening and colloid surfaces”, Phys. Rev. Lett., 11, 4660, 1996.

    Article  ADS  Google Scholar 

  9. E.S. Boek and P. van der Schoot, “Resolution effects in dissipative particle dynamics simulations”, Int. J. Mod. Phys. C, 9, 1307, 1997.

    Article  ADS  Google Scholar 

  10. M. Whittle and E. Dickinson, “On simulating colloids by dissipative particle dynamics: issues and complications”, J. Colloid Interface Set, 242, 106, 2001.

    Article  Google Scholar 

  11. M. Kao, A. Yodh, and DJ. Pine, “Observation of brownian motion on the time scale of hydrodynamic interactions”, Phys. Rev. Lett., 70, 242, 1993.

    Article  ADS  Google Scholar 

  12. A.G. Schlijper, PJ. Hoogerbrugge, and C.W. Manke, “Computer simulation of dilute polymer solutions with dissipative particle dynamics”, J. Rheol, 39(3), 567–579, 1995.

    Article  ADS  Google Scholar 

  13. Y. Kong, C.W. Manke, W.G. Madden, and A.G. Schlijper, “Effect of solvent qualityon the conformation and relaxation of polymers via dissipative particle dynamics”, J. Chem. Phys., 107, 592, 1997.

    Article  ADS  Google Scholar 

  14. N.A. Spenley, “Scaling laws for polymers in dissipative particle dynamics”, Mol. Simul, 49, 534, 2000.

    Google Scholar 

  15. Y. Kong, C.W. Manke, W.G. Madden, and A.G. Schlijper, “Modeling the rheology of polymer solutions by dissipative particle dynamics”, Tribol. Lett., 3, 133, 1997.

    Article  Google Scholar 

  16. A.G. Schlijper, C.W. Manke, W. GH, and Y Kong, “Computer simulation of non-Newtonian fluid rheology”, Int. J. Mod. Phys. C, 8(4), 919–929, 1997.

    Google Scholar 

  17. Y Kong, C.W. Manke, W.G. Madden, and A.G. Schlijper, “Simulation of a confined polymer on solution using the dissipative particle dynamics method”, Int. J. Thermophys., 15, 1093, 1994.

    Article  ADS  Google Scholar 

  18. P.V. Coveney and K. Novik, “Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics”, Phys. Rev. E, 54, 5134, 1996.

    Article  ADS  Google Scholar 

  19. S.I. Jury, P. Bladon, S. Krishna, and M.E. Cates, “Test of dynamical scaling in threedimensional spinodal decomposition”, Phys. Rev. E, 59, R2535, 1999.

    Article  ADS  Google Scholar 

  20. K.E. Novik and P.V. Coveney, “Spinodal decomposition off of-critical quenches with a viscous phase using dissipative particle dynamics in two and three spatial dimensions”, Phys. Rev. E, 61, 435, 2000.

    Article  ADS  Google Scholar 

  21. V.M. Kendon, J.-C. Desplat, P. Bladon, and M.E. Cates, “Test of dynamical scaling in three-dimensional spinodal decomposition”, Phys. Rev. Lett., 83, 576, 1999.

    Article  ADS  Google Scholar 

  22. R.D. Groot and P.B. Warren, “Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation”, J. Chem. Phys., 107, 4423, 1997.

    Article  ADS  Google Scholar 

  23. S.M. Willemsen, T.J.H. Vlugt, H.C.J. Hoefsloot, and B. Smit, “Combining dissipative particle dynamics and Monte Carlo techniques”, J. Comput. Phys., 147, 50, 1998.

    Article  Google Scholar 

  24. CM. Wijmans, B. Smit, and R.D. Groot, “Phase behavior of monomeric mixtures and polymer solutions with soft interaction potential”, J. Chem. Phys., 114, 7644, 2001.

    Article  ADS  Google Scholar 

  25. R.D. Groot and TJ. Madden, “Dynamic simulation of diblock copolymer microphase separation”, J. Chem. Phys., 108, 8713, 1997.

    Article  ADS  Google Scholar 

  26. R.D. Groot, TJ. Madden, and DJ. Tildesley, “On the role of hydrodynamic interactions in block copolymer microphase separation”, J. Chem. Phys., 110, 9739, 1999.

    Article  ADS  Google Scholar 

  27. S. Jury, P. Bladon, M. Cates, S. Krishna, M. Hagen, N. Ruddock, and P.B. Warren, “Simulation of amphiphilic mesophases using dissipative particle dynamics”, Phys. Chem. Chem. Phys., 1, 2051, 1999.

    Article  Google Scholar 

  28. M. Venturoli and B. Smit, “Simulating the self-assembly of model membranes”, Phys. Chem. Commun., 10, 1, 1999.

    Google Scholar 

  29. J.L. Jones, M. Lai, N. Ruddock, and N.A. Spenley, “Dynamics of a drop at a liquid/solid interface in simple shear fields: amesoscopic simulation study”, Faraday Discuss., 112, 129, 1999.

    Article  ADS  Google Scholar 

  30. P. Malfreyt and D.J. Tildesley, “Dissipative particle dynamics of grafted polymer chains between two walls”, Langmuir, 16, 4732, 2000.

    Article  Google Scholar 

  31. S. Ymamoto, Y. Maruyama, and S. Hyodo, “Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules”, J. Chem. Phys., 116(13), 5842, 2003.

    Article  ADS  Google Scholar 

  32. R.D. Groot, “Electrostatic interactions in dissipative particle dynamics — simulation of polyelectrlytes and anionic surfactants”, J. Chem. Phys., 118, 11265, 2003.

    Article  ADS  Google Scholar 

  33. J. Bonet-Avalos and A.D. Mackie, “Dissipative particle dynamics with energy conservation”, Europhys. Lett., 40, 141, 1997.

    Article  ADS  Google Scholar 

  34. P. Espanol, “Dissipative particle dynamics with energy conservation”, Europhys. Lett., 40, 631, 1997.

    Article  ADS  Google Scholar 

  35. I. Pagonabarraga and D. Frenkel, “Dissipative particle dynamics for interacting systems”, J. Chem. Phys., 115, 5015, 2001.

    Article  ADS  Google Scholar 

  36. S.Y. Trofimov, E.L.E Nies, and M.A.J. Michels, “Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures”, J. Chem. Phys., 117, 9383, 2002.

    Article  ADS  Google Scholar 

  37. P. Espanol and M. Revenga, “Smoothed dissipative particle dynamics”, Phys. Rev. E, 67, 026705, 2003.

    Article  ADS  Google Scholar 

  38. E.G. Flekkøy, P.V. Coveney, and G. DeFabritiis, “Foundations of dissipative particle dynamics”, Phys. Rev. E, 62, 2140, 2000.

    Article  ADS  Google Scholar 

  39. M. Serrano and P. Espanol, “Thermodynamically consistent mesoscopic fluid particle model”, Phys. Rev. E, 64, 046115, 2001.

    Article  ADS  Google Scholar 

  40. M. Serrano, G. DeFabritiis, P. Espanol, E.G. Flekkoy, and P.V. Coveney, “Mesoscopic dynamics of voronoi fluid particles”, J. Phys. A: Math. Gen., 35, 1605–1625, 2002.

    Article  MATH  ADS  Google Scholar 

  41. S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, Amsterdam, 1964.

    Google Scholar 

  42. P.W. Cleary and J.J. Monaghan, “Conduction modelling using smoothed particle hydrodynamics”, J. Comput. Phys., 148, 227, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. L.B. Lucy, “A numerical testing of the fission hypothesis”, Astron. J., 82, 1013, 1977.

    Article  ADS  Google Scholar 

  44. J.J. Monaghan, “Smoothed particle hydrodynamics”, Annu. Rev. Astron. Astrophys., 30, 543–574, 1992.

    Article  ADS  Google Scholar 

  45. H. Takeda, S.M. Miyama, and M. Sekiya, “Numerical simulation of viscous flow by smoothed particle hydrodynamics”, Prog. Theor. Phys., 92, 939, 1994.

    Article  ADS  Google Scholar 

  46. O. Kum, W.G. Hoover, and H.A. Posch, “Viscous conducting flows with smoothparticle applied mechanics”, Phys. Rev. E, 52, 4899, 1995.

    Article  ADS  Google Scholar 

  47. H.C. Ottinger and M. Grmela, “Dynamics and thermodynamics of complex fluids. II. Ilustrations of a general formalism”, Phys. Rev. E, 56, 6633, 1997.

    Article  MathSciNet  ADS  Google Scholar 

  48. B.I.M. ten Bosch, “On an extension of dissipative particle dynamics for viscoelastic flow modelling”, J. Non-Newtonian Fluid Meek, 83, 231, 1999.

    Article  MATH  Google Scholar 

  49. M. Ellero, P. Espanol, and E.G. Flekkoy, “Thermodynamically consistent fluid particle model for viscoelastic flows”, Phys. Rev. E, 68, 041504, 2003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Espanol, P. (2005). Dissipative Particle Dynamics. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_131

Download citation

Publish with us

Policies and ethics