Development of Cerebellar Nuclei

  • Gina E. Elsen
  • Gordana Juric-Sekhar
  • Ray A. M. Daza
  • Robert F. Hevner


The cerebellum is a foliated structure consisting of the laminated cerebellar cortex and a paired set of bilateral cerebellar nuclei (CN) located in the deep white matter adjacent to the roof of the fourth ventricle. The CN are comprised of multiple neuron types including large glutamatergic projection neurons, GABAergic projection neurons, and small GABAergic interneurons. Hodologically, CN receive afferent projections from Purkinje cells, and give rise to major cerebellar output tracts. The developmental origins of CN have long been debated, although the consensus of evidence now indicates that different GABAergic (inhibitory) and glutamatergic (excitatory) neuronal populations are derived by sequential neurogenesis from distinct progenitor compartments. Each type of neuronal population is born at different times and follows a unique migratory route. The molecular mechanisms regulating CN neurogenesis, cellular migration, and axonal guidance of the efferent pathways are now being elucidated. This chapter highlights recent advances in embryonic cerebellar development, focusing on the development of CN and their connections, and on molecular mechanisms underlying their development. Mouse mutant phenotypes involving the CN, as well as human malformations affecting CN morphology, illustrate the importance of CN in cerebellar function and pathology.


Purkinje Cell Cerebellar Cortex Cerebellar Nucleus Ventricular Zone Uncinate Fasciculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386(6627):838–842PubMedCrossRefGoogle Scholar
  2. Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179(1):23–48PubMedCrossRefGoogle Scholar
  3. Altman J, Bayer SA (1985a) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231(1):1–26PubMedCrossRefGoogle Scholar
  4. Altman J, Bayer SA (1985b) Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J Comp Neurol 231(1):27–41PubMedCrossRefGoogle Scholar
  5. Altman J, Bayer SA (1985c) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231(1):42–65PubMedCrossRefGoogle Scholar
  6. Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78(5):551–562PubMedCrossRefGoogle Scholar
  7. Armstrong DM, Schild RF (1978a) An investigation of the cerebellar cortico-nuclear projections in the rat using an autoradiographic tracing method. I. Projections from the vermis. Brain Res 141(1):1–19PubMedCrossRefGoogle Scholar
  8. Armstrong DM, Schild RF (1978b) An investigation of the cerebellar corticonuclear projections in the rat using an autoradiographic tracing method. II. Projections from the hemisphere. Brain Res 141(2):235–249PubMedCrossRefGoogle Scholar
  9. Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29(32):10104–10110PubMedCrossRefGoogle Scholar
  10. Barth PG, Aronica E, de Vries L, Nikkels PG, Scheper W, Hoozemans JJ, Poll-The BT, Troost D (2007) Pontocerebellar hypoplasia type 2: a neuropathological update. Acta Neuropathol 114(4):373–386PubMedCrossRefGoogle Scholar
  11. Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2(4):242–262PubMedCrossRefGoogle Scholar
  12. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390(6656):169–172PubMedCrossRefGoogle Scholar
  13. Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J Neurosci 19(11):4407–4420PubMedGoogle Scholar
  14. Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14(1):91–100PubMedCrossRefGoogle Scholar
  15. Causeret F, Danne F, Ezan F, Sotelo C, Bloch-Gallego E (2002) Slit antagonizes netrin-1 attractive effects during the migration of inferior olivary neurons. Dev Biol 246(2):429–440PubMedCrossRefGoogle Scholar
  16. Chang AC, Ghetti B (1993) Embryonic cerebellar graft development during acute phase of gliosis in the cerebellum of pcd mutant mice. Chin J Physiol 36(3):141–149PubMedGoogle Scholar
  17. Chan-Palay V (1977) Cerebellar dentate nucleus. organization, cytology and transmitters. JNEN 36(6):978Google Scholar
  18. Chemli J, Abroug M, Tlili K, Harbi A (2007) Rhombencephalosynapsis diagnosed in childhood: clinical and MRI findings. Eur J Paediatr Neurol 11(1):35–38PubMedCrossRefGoogle Scholar
  19. Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133(15):2793–2804PubMedCrossRefGoogle Scholar
  20. Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci USA 107(23):10725–10730PubMedCrossRefGoogle Scholar
  21. Chung S, Zhang Y, Van Der Hoorn F, Hawkes R (2007) The anatomy of the cerebellar nuclei in the normal and scrambler mouse as revealed by the expression of the microtubule-associated protein kinesin light chain 3. Brain Res 1140:120–131PubMedCrossRefGoogle Scholar
  22. Chung SH, Marzban H, Hawkes R (2009) Compartmentation of the cerebellar nuclei of the mouse. Neuroscience 161(1):123–138PubMedCrossRefGoogle Scholar
  23. de Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333PubMedCrossRefGoogle Scholar
  24. Doherty D (2009) Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 16(3):143–154PubMedCrossRefGoogle Scholar
  25. Engelkamp D, Rashbass P, Seawright A, van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126(16):3585–3596PubMedGoogle Scholar
  26. Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26(36):9184–9195PubMedCrossRefGoogle Scholar
  27. Fatemi (2008) Reelin glycoprotein. In: Rober H Hevner (ed) Reelin and the cerebellum. Springer, New York, pp 141–158Google Scholar
  28. Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26(11):3066–3076PubMedCrossRefGoogle Scholar
  29. Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. Anat Embryol (Berl) 184(3):225–243CrossRefGoogle Scholar
  30. Friede RL, Boltshauser E (1978) Uncommon syndromes of cerebellar vermis aplasia. I: Joubert syndrome. Dev Med Child Neurol 20(6):758–763PubMedCrossRefGoogle Scholar
  31. Gardner RJ, Coleman LT, Mitchell LA, Smith LJ, Harvey AS, Scheffer IE, Storey E, Nowotny MJ, Sloane RA, Lubitz L (2001) Near-total absence of the cerebellum. Neuropediatrics 32(2):62–68PubMedCrossRefGoogle Scholar
  32. Goffinet AM (1983) The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol (Berl) 168(1):73–86CrossRefGoogle Scholar
  33. Goffinet AM, So KF, Yamamoto M, Edwards M, Caviness VS Jr (1984) Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res 318(2):263–276PubMedGoogle Scholar
  34. Graham JM Jr, Spencer AH, Grinberg I, Niesen CE, Platt LD, Maya M, Namavar Y, Baas F, Dobyns WB (2010) Molecular and neuroimaging findings in pontocerebellar hypoplasia type 2 (PCH2): is prenatal diagnosis possible? Am J Med Genet A 152A(9):2268–2276PubMedCrossRefGoogle Scholar
  35. Gudovic R, Marinkovic R, Aleksic S (1987) The development of the dentate nucleus in man. Anat Anz 163(3):233–238PubMedGoogle Scholar
  36. Haines DE, May PJ, Dietrichs E (1990) Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol 299(1):106–122PubMedCrossRefGoogle Scholar
  37. Hayaran A, Wadhwa S, Bijlani V (1992a) Cytoarchitectural development of the human dentate nucleus: a Golgi study. Dev Neurosci 14(3):181–194PubMedCrossRefGoogle Scholar
  38. Hayaran A, Wadhwa S, Gopinath G, Bijlani V (1992b) Developing dentate nucleus in man: a qualitative and quantitative study. Exp Brain Res 89(3):640–648PubMedCrossRefGoogle Scholar
  39. Helms AW, Gowan K, Abney A, Savage T, Johnson JE (2001) Overexpression of MATH1 disrupts the coordination of neural differentiation in cerebellum development. Mol Cell Neurosci 17(4):671–682PubMedCrossRefGoogle Scholar
  40. Hevner RF (2005) The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol 110(3):208–221PubMedCrossRefGoogle Scholar
  41. Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233PubMedCrossRefGoogle Scholar
  42. Ho KL, Chang CH, Yang SS, Chason JL (1984) Neuropathologic findings in thanatophoric dysplasia. Acta Neuropathol 63(3):218–228PubMedCrossRefGoogle Scholar
  43. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47(2):201–213PubMedCrossRefGoogle Scholar
  44. Ito M (1984) The cerebellum and neural control. Raven, New YorkGoogle Scholar
  45. Iwata T, Hevner RF (2009) Fibroblast growth factor signaling in development of the cerebral cortex. Dev Growth Differ 51(3):299–323PubMedCrossRefGoogle Scholar
  46. Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, Voogd J (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 114:67–96PubMedCrossRefGoogle Scholar
  47. Jaeken J, Casaer P (1997) Carbohydrate-deficient glycoconjugate (CDG) syndromes: a new chapter of neuropaediatrics. Eur J Paediatr Neurol 1(2–3):61–66PubMedCrossRefGoogle Scholar
  48. Jankovski A, Rossi F, Sotelo C (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur J Neurosci 8(11):2308–2319PubMedCrossRefGoogle Scholar
  49. Joubert M, Eisenring JJ, Robb JP, Andermann F (1969) Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19(9):813–825PubMedCrossRefGoogle Scholar
  50. Kim D, Ackerman SL (2011) The UNC5C netrin receptor regulates dorsal guidance of mouse hindbrain axons. J Neurosci 31(6):2167–2179PubMedCrossRefGoogle Scholar
  51. Korneliussen HK (1967) Cerebellar corticogenesis in Cetaca, with special reference to regional variations. J Hirnforsch 9(2):151–185PubMedGoogle Scholar
  52. Korneliussen HK (1968) On the morphology and subdivision of the cerebellar nuclei of the rat. J Hirnforsch 10(2):109–122PubMedGoogle Scholar
  53. Kruer MC, Blasco PA, Anderson JC, Bardo DM, Pinter JD (2009) Truncal ataxia, hypotonia, and motor delay with isolated rhombencephalosynapsis. Pediatr Neurol 41(3):229–231PubMedCrossRefGoogle Scholar
  54. La Malfa G, Lassi S, Bertelli M, Salvini R, Placidi GF (2004) Autism and intellectual disability: a study of prevalence on a sample of the Italian population. J Intellect Disabil Res 48(Pt 3):262–267PubMedCrossRefGoogle Scholar
  55. Langer LO Jr, Yang SS, Hall JG, Sommer A, Kottamasu SR, Golabi M, Krassikoff N (1987) Thanatophoric dysplasia and cloverleaf skull. Am J Med Genet Suppl 3:167–179PubMedCrossRefGoogle Scholar
  56. Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100(4):443–454PubMedCrossRefGoogle Scholar
  57. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26(45):11682–11694PubMedCrossRefGoogle Scholar
  58. Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, Rossi F (2009) Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci 29(21):7079–7091PubMedCrossRefGoogle Scholar
  59. Limperopoulos C, du Plessis AJ (2006) Disorders of cerebellar growth and development. Curr Opin Pediatr 18(6):621–627PubMedCrossRefGoogle Scholar
  60. Louvi A, Alexandre P, Metin C, Wurst W, Wassef M (2003) The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130(22):5319–5330PubMedCrossRefGoogle Scholar
  61. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95(16):9448–9453PubMedCrossRefGoogle Scholar
  62. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48(1):17–24PubMedCrossRefGoogle Scholar
  63. Malcolm B, Carpenter AB (1978) Core text of neuroanatomy, 2nd edn. Williams and Wilkins, BaltimoreGoogle Scholar
  64. Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten J, Dede D, Fennell E (1999) Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol 14(6):368–376PubMedCrossRefGoogle Scholar
  65. Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41(2):281–294PubMedCrossRefGoogle Scholar
  66. Maricich SM, Soha J, Trenkner E, Herrup K (1997) Failed cell migration and death of purkinje cells and deep nuclear neurons in the weaver cerebellum. J Neurosci 17(10):3675–3683PubMedGoogle Scholar
  67. Marti J, Wills KV, Ghetti B, Bayer SA (2001) Evidence that the loss of Purkinje cells and deep cerebellar nuclei neurons in homozygous weaver is not related to neurogenetic patterns. Int J Dev Neurosci 19(6):599–610PubMedCrossRefGoogle Scholar
  68. Martin GF, Henkel CK, King JS (1976) Cerebello-olivary fibers: their origin, course and distribution in the North American opossum. Exp Brain Res 24:219–236PubMedCrossRefGoogle Scholar
  69. Matano S (2001) Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am J Phys Anthropol 114(2):163–165PubMedCrossRefGoogle Scholar
  70. Mathis L, Nicolas JF (2003) Progressive restriction of cell fates in relation to neuroepithelial cell mingling in the mouse cerebellum. Dev Biol 258(1):20–31PubMedCrossRefGoogle Scholar
  71. Mathis L, Bonnerot C, Puelles L, Nicolas JF (1997) Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics. Development 124(20):4089–4104PubMedGoogle Scholar
  72. McErlean A, Abdalla K, Donoghue V, Ryan S (2010) The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40(3):326–339PubMedCrossRefGoogle Scholar
  73. Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296PubMedCrossRefGoogle Scholar
  74. Mihajlovic P, Zecevic N (1986) Development of the human dentate nucleus. Hum Neurobiol 5(3):189–197PubMedGoogle Scholar
  75. Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18(1):12–19PubMedCrossRefGoogle Scholar
  76. Miller E, Blaser S, Shannon P, Widjaja E (2009) Brain and bone abnormalities of thanatophoric dwarfism. AJR Am J Roentgenol 192(1):48–51PubMedCrossRefGoogle Scholar
  77. Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13(13):1647–1652PubMedCrossRefGoogle Scholar
  78. Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26(47):12226–12236PubMedCrossRefGoogle Scholar
  79. Mugnaini EOWH (1985) GABAergic neurons and terminals in the rat CNS as revealed by GAD immuno-histochemistry. In: GABA and neuropeptides in teh CNS: the handbook of chemical neuroanatomy part I. Elsevier, Amsterdam, pp 541–543Google Scholar
  80. Namavar Y, Barth PG, Kasher PR, van Ruissen F, Brockmann K, Bernert G, Writzl K, Ventura K, Cheng EY, Ferriero DM et al (2011) Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134(Pt 1):143–156PubMedCrossRefGoogle Scholar
  81. Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127(Pt 12):2572–2583PubMedCrossRefGoogle Scholar
  82. Parisi MA (2009) Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet 151C(4):326–340PubMedCrossRefGoogle Scholar
  83. Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80(1–2):36–53PubMedCrossRefGoogle Scholar
  84. Parisi MA, Doherty D, Chance PF, Glass IA (2007) Joubert syndrome (and related disorders) (OMIM 213300). Eur J Hum Genet 15(5):511–521PubMedCrossRefGoogle Scholar
  85. Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104(12):5193–5198PubMedCrossRefGoogle Scholar
  86. Pasquier L, Marcorelles P, Loget P, Pelluard F, Carles D, Perez MJ, Bendavid C, de La Rochebrochard C, Ferry M, David V et al (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol 117(2):185–200PubMedCrossRefGoogle Scholar
  87. Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol 23(7):1074–1087PubMedGoogle Scholar
  88. Patel MS, Becker LE, Toi A, Armstrong DL, Chitayat D (2006) Severe, fetal-onset form of olivopontocerebellar hypoplasia in three sibs: PCH type 5? Am J Med Genet A 140(6):594–603PubMedGoogle Scholar
  89. Pierce ET (1975) Histogenesis of the deep cerebellar nuclei in the mouse: an autoradiagraphic study. Brain Res 95:503–518PubMedCrossRefGoogle Scholar
  90. Ramaekers VT, Heimann G, Reul J, Thron A, Jaeken J (1997) Genetic disorders and cerebellar structural abnormalities in childhood. Brain 120(Pt 10):1739–1751PubMedCrossRefGoogle Scholar
  91. Rankin J, Brown R, Dobyns WB, Harington J, Patel J, Quinn M, Brown G (2010) Pontocerebellar hypoplasia type 6: a British case with PEHO-like features. Am J Med Genet A 152A(8):2079–2084PubMedCrossRefGoogle Scholar
  92. Reiss K, Mentlein R, Sievers J, Hartmann D (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115(1):295–305PubMedCrossRefGoogle Scholar
  93. Renbaum P, Kellerman E, Jaron R, Geiger D, Segel R, Lee M, King MC, Levy-Lahad E (2009) Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet 85(2):281–289PubMedCrossRefGoogle Scholar
  94. Rice DS, Nusinowitz S, Azimi AM, Martinez A, Soriano E, Curran T (2001) The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron 31(6):929–941PubMedCrossRefGoogle Scholar
  95. Ruigrok TJ (1997) Cerebellar nuclei: the olivary connection. Prog Brain Res 114:167–192PubMedCrossRefGoogle Scholar
  96. Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4(3):174–198PubMedCrossRefGoogle Scholar
  97. Sekerkova G, Ilijic E, Mugnaini E (2004) Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience 127(4):845–858PubMedCrossRefGoogle Scholar
  98. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36(12):1301–1305PubMedCrossRefGoogle Scholar
  99. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45(1):27–40PubMedGoogle Scholar
  100. Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577PubMedCrossRefGoogle Scholar
  101. Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72(5):295–339PubMedCrossRefGoogle Scholar
  102. Tamada A, Kumada T, Zhu Y, Matsumoto T, Hatanaka Y, Muguruma K, Chen Z, Tanabe Y, Torigoe M, Yamauchi K et al (2008) Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing. Neural Dev 3:29PubMedCrossRefGoogle Scholar
  103. Tissir F, Wang CE, Goffinet AM (2004) Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development. Brain Res Dev Brain Res 149(1):63–71PubMedCrossRefGoogle Scholar
  104. Toelle SP, Yalcinkaya C, Kocer N, Deonna T, Overweg-Plandsoen WC, Bast T, Kalmanchey R, Barsi P, Schneider JF, Capone Mori A et al (2002) Rhombencephalosynapsis: clinical findings and neuroimaging in 9 children. Neuropediatrics 33(4):209–214PubMedCrossRefGoogle Scholar
  105. Triarhou LC, Norton J, Ghetti B (1987) Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Exp Brain Res 66(3):577–588PubMedCrossRefGoogle Scholar
  106. Truwit CL, Barkovich AJ, Shanahan R, Maroldo TV (1991) MR imaging of rhombencephalosynapsis: report of three cases and review of the literature. AJNR Am J Neuroradiol 12(5):957–965PubMedGoogle Scholar
  107. Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M (1998) Rhombencephalosynapsis: cerebellar embryogenesis. AJNR Am J Neuroradiol 19(3):547–549PubMedGoogle Scholar
  108. Uusisaari M, Knopfel T (2008) GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience 156(3):537–549PubMedCrossRefGoogle Scholar
  109. Uusisaari M, Knopfel T (2010) GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum 9(1):42–55PubMedCrossRefGoogle Scholar
  110. Uusisaari M, Obata K, Knopfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97(1):901–911PubMedCrossRefGoogle Scholar
  111. Voogd J (1995) Cerebellum. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 309–350Google Scholar
  112. Wang T, Morgan JI (2007) The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res 1140:26–40PubMedCrossRefGoogle Scholar
  113. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48(1):31–43PubMedCrossRefGoogle Scholar
  114. Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW, de Leon M et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119(6):755–770PubMedCrossRefGoogle Scholar
  115. Weisheit G, Gliem M, Endl E, Pfeffer PL, Busslinger M, Schilling K (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci 24(2):466–478PubMedCrossRefGoogle Scholar
  116. Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73(3):400–409PubMedCrossRefGoogle Scholar
  117. Wingate RJ (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11(1):82–88PubMedCrossRefGoogle Scholar
  118. Wingate R (2005) Math-Map(ic)s. Neuron 48(1):1–4PubMedCrossRefGoogle Scholar
  119. Yachnis AT (2002) Rhombencephalosynapsis with massive hydrocephalus: case report and pathogenetic considerations. Acta Neuropathol 103(3):301–304PubMedCrossRefGoogle Scholar
  120. Yachnis AT, Rorke LB (1999) Cerebellar and brainstem development: an overview in relation to Joubert syndrome. J Child Neurol 14(9):570–573PubMedCrossRefGoogle Scholar
  121. Yachnis AT, Rorke LB, Lee VM, Trojanowski JQ (1993) Expression of neuronal and glial polypeptides during histogenesis of the human cerebellar cortex including observations on the dentate nucleus. J Comp Neurol 334(3):356–369PubMedCrossRefGoogle Scholar
  122. Yamaguchi K, Goto N, Yamamoto TY (1989) Development of human cerebellar nuclei. Morphometric study. Acta Anat (Basel) 136(1):61–68CrossRefGoogle Scholar
  123. Zhang L, Goldman JE (1996) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16(1):47–54PubMedCrossRefGoogle Scholar
  124. Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, Rao Y (2002) Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 5(8):719–720PubMedGoogle Scholar
  125. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gina E. Elsen
    • 1
  • Gordana Juric-Sekhar
    • 2
  • Ray A. M. Daza
    • 1
  • Robert F. Hevner
    • 1
  1. 1.Department of Neurological SurgerySeattle Children’s Research Institute, Center for Integrative Brain Research, M/S C9S-10SeattleUSA
  2. 2.Department of PathologyHarborview Medical CenterSeattleUSA

Personalised recommendations