Skip to main content

The Family Rhodospirillaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Rhodospirillaceae Pfennig and Trüper 1971, 17AL

Rhodospirillaceae are a family within the order Rhodospirillales in the subclass of Alphaproteobacteria. The family Rhodospirillaceae, the so-called purple non-sulfur bacteria, have the type genus Rhodospirillum and embrace a total of 34 genera: Azospirillum, Caenispirillum, Constrictibacter, Defluviicoccus, Desertibacter, Dongia, Elstera, Ferrovibrio, Fodinicurvata, Inquilinus, Insolitispirillum, Limimonas, Magnetospira, Magnetospirillum, Magnetovibrio, Marispirillum, Nisaea, Novispirillum, Oceanibaculum, Pelagibius, Phaeospirillum, Phaeovibrio, Rhodocista, Rhodospira, Rhodospirillum, Pararhodospirillum, Rhodovibrio, Roseospira, Skermanella, Telmatospirillum, Thalassobaculum, Thalassospira, Tistlia, and Tistrella. According to 16S rRNA gene sequence similarities, the genera within the Rhodospirillaceae can be grouped into three big clusters: Azospirillum–Skermanella–Desertibacter–Rhodocista–Dongia–Elstera–Inquilinus, Magnetospirillum–Nisaea–Thalassobaculum–Oceanibaculum–Fodinicurvata –Pelagibius –Tistlia–Phaeospirillum–Telmatospirillum–Defluviicoccus–Tistrella–Constrictibacter–Rhodovibrio–Limimonas, and Rhodospirillum–Pararhodospirillum–Roseospira–Rhodospira–Phaeovibrio–Novispirillum–Marispirillum–Insolitispirillum–Caenispirillum–Thalassospira–Magnetospira–Magnetovibrio–Ferrovibrio. Some genera in the family Rhodospirillaceae grow photoheterotrophically under anoxic conditions in the light and chemoheterotrophically in the dark, while others grow heterotrophically under aerobic/microaerobic conditions. The members of the Rhodospirillaceae stain Gram negative and form rod shaped to spirillum-formed cells. The chemoheterotrophs include the facultative anaerobic genera Skermanella, Telmatospirillum, Caenispirillum, Thalassobaculum, and Nisaea and the strictly aerobic and microoxic genera Azospirillum, Conglomeromonas, Magnetospirillum, Thalassospira, Tistrella, and Inquilinus. The genus Azospirillum contains several diazotrophic, plant-associated bacteria having plant growth-promoting potential with agricultural application. Other genera include strains with interesting biotechnological potentials. Some genera also harbor opportunistic pathogenic bacteria, whose risk potential is not yet clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Zahedi H (2013) Effect of plant growth promoting rhizobacteria (PGPR) on antioxidative enzymes of soybean subjected to different irrigation regimes. Res Crops 14:189–193

    Google Scholar 

  • Alexandre G, Bally R (1999) Emergence of a laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol Lett 174:371–378

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Makhdoumi-Kakhki A, Ramezani M, Nikou MM, Fazeli SAS, Schumann P, Ventosa A (2013) Limimonas halophila gen. nov., sp. nov., an extremely halophilic bacterium in the family Rhodospirillaceae. Int J Syst Evol Microbiol 63:1562–1567

    Article  PubMed  Google Scholar 

  • An H, Zhang L, Tang Y, Luo X, Sun T, Li Y, Wang Y, Dai J, Fang C (2009) Skermanella xinjiangensis sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 59:1531–1534

    Article  CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM (2012) Global network of specific virus–host interactions in hypersaline environments. Environ Microbiol 14:426–440

    Article  CAS  PubMed  Google Scholar 

  • Atanasova NS, Pietilä MK, Oksanen HM (2013) Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. MicrobiologyOpen 2:811–825

    PubMed Central  PubMed  Google Scholar 

  • Azevedo MDS, Teixeira KRDS, Kirchhof G, Hartmann A, Baldani JI (2005) Influence of soil and host plant crop on the genetic diversity of Azospirillum amazonense isolates. Pedobiologia 49:565–576

    Article  CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1997) Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. Plant Growth Regul 21:153–163

    Article  CAS  Google Scholar 

  • Baik KS, Hwang YM, Choi J-S, Kwon J, Seong CN (2013) Dongia rigui sp. nov., isolated from freshwater of a large wetland in Korea. Antonie Van Leeuwenhoek 104:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579

    Article  CAS  PubMed  Google Scholar 

  • Baldani VLD, Alvarez MAB, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  • Bally R, Thomas-Bauzon D, Heulin TH, Balandreau J, Richard C, Ley JD (1983) Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can J Microbiol 29:881–887

    Article  Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays l.) under drought stress. Pak J Bot 45(S1):13–20

    CAS  Google Scholar 

  • Bashan Y, Levanony H, Mitiku G (1989) Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Can J Microbiol 35(7):691–697

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577

    Article  CAS  PubMed  Google Scholar 

  • Battistuzzi FU, Hedges SB (2009) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 26:335–343

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518

    Article  Google Scholar 

  • Bazylinski DA, Dean AJ, Schüler D, Phillips EJ, Lovley DR (2000) N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Williams TJ, Lefèvre CT, Trubitsyn D, Fang J, Beveridge TJ, Simpson B (2013) Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Microbiol 63(Pt 5):1824–1833

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck M (1925) Über ein Spirillum, welches freien Stickstoff binden kann? Zentralb Bakteriol Parasitenkd Infektionskr Hyg Abst 2(63):353–359

    Google Scholar 

  • Ben Dekhil S, Cahill M, Stackebrandt E, Sly L (1997) Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst Appl Microbiol 20:72–77

    Article  Google Scholar 

  • Bender KS, Rice MR, Fugate WH, Coates JD, Achenbach LA (2004) Metabolic primers for detection of (per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences Appl. Environ Microbiol 70:5651–5658

    Article  CAS  Google Scholar 

  • Bertani LE, Weko J, Phillips KV, Gray RF, Kirschvink JL (2001) Physical and genetic characterization of the genome of Magnetospirillum magnetotacticum, strain MS-1. Gene 264:257–263

    Article  CAS  PubMed  Google Scholar 

  • Bibashi E, Sofianou D, Kontopoulou K, Mitsopoulos E, Kokolina E (2000) Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 38:456–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bible AN, Stephens BB, Ortega DR, Xie Z, Alexandre G (2008) Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense. J Bacteriol 190:6365–6375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. In: The prokaryotes, vol 1. Springer, New York, pp 267–273

    Google Scholar 

  • Bittar F, Leydier A, Bosdure E, Toro A, Reynaud-Gaubert M, Boniface S, Stremler N, Dubus J-C, Sarles J, Raoult D et al (2008) Inquilinus limosus and cystic fibrosis. Emerg Infect Dis 14:993–995

    Article  PubMed Central  PubMed  Google Scholar 

  • Blakemore R, Maratea D, Wolfe R (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blazejak A, Kuever J, Erséus C, Amann R, Dubilier N (2006) Phylogeny of 16S rRNA, ribulose 1, 5-bisphosphate carboxylase/oxygenase, and adenosine 5-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (Oligochaeta) from Bermuda and the Bahamas. Appl Environ Microbiol 72:5527–5536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boggio SB, Roveri OA (2003) Catalytic properties of an endogenous-lactamase responsible for the resistance of Azospirillum lipoferum to beta-lactam antibiotics. Microbiology 149:445–450

    Article  CAS  PubMed  Google Scholar 

  • Boggio SB, Ricci JCD, de Mendoza D, Roveri OA (1989) Demonstration of the presence of an inducible β-lactamase in Azospirillum lipoferum. Curr Microbiol 18:33–35

    Article  CAS  Google Scholar 

  • Borghese R, Zagnoli A, Zannoni D (2001) Plasmid transfer and susceptibility to antibiotics in the halophilic phototrophs Rhodovibrio salinarum and Rhodothalassium salexigens. FEMS Microbiol Lett 197:117–121

    Article  CAS  PubMed  Google Scholar 

  • Boutaiba S, Hacene H, Bidle KA, Maupin-Furlow JA (2011) Microbial diversity of the hypersaline Sidi Ameur and Himalatt Salt Lakes of the Algerian Sahara. J Arid Environ 75:909–916

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (β-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55

    Article  CAS  PubMed  Google Scholar 

  • Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burow LC, Kong Y, Nielsen JL, Blackall LL, Nielsen PH (2007) Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Microbiology 153:178–185

    Article  CAS  PubMed  Google Scholar 

  • Butzin NC, Owen HA, Collins MLP (2010) A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr Purif 70:88–94

    Article  CAS  PubMed  Google Scholar 

  • Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Lett 218:371–375

    Article  CAS  PubMed  Google Scholar 

  • Calugay RJ, Takeyama H, Mukoyama D, Fukuda Y, Suzuki T, Kanoh K, Matsunaga T (2006) Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J Biosci Bioeng 101:445–447

    Article  CAS  PubMed  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Google Scholar 

  • Chakravarthy SK, Srinivas T, Kumar PA, Sasikala C, Ramana CV (2007) Roseospira visakhapatnamensis sp. nov. and Roseospira goensis sp. nov. Int J Syst Evol Microbiol 57:2453–2457

    Article  CAS  Google Scholar 

  • Chang Y, Tang T, Li J-L (2007) Isolation of a flagellar operon in Azospirillum brasilense and functional analysis of FlbD. Res Microbiol 158:521–528

    Article  CAS  PubMed  Google Scholar 

  • Chiron R, Marchandin H, Counil F, Jumas-Bilak E, Freydière A-M, Bellon G, Husson M-O, Turck D, Brémont F, Chabanon G et al (2005) Clinical and microbiological features of Inquilinus sp. isolates from five patients with cystic fibrosis. J Clin Microbiol 43:3938–3943

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi DH, Hwang CY, Cho BC (2009) Pelagibius litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 59:818–823

    Article  CAS  PubMed  Google Scholar 

  • Choix FJ, de Bashan LE, Bashan Y (2012) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzyme Microb Technol 51:294–299

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P, Govan JR, LiPuma JJ (2001) Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39(10):3427–3436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coenye T, Goris J, Spilker T, Vandamme P, LiPuma JJ (2002) Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40:2062–2069

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen MF, Han XY, Mazzola M (2004) Molecular and physiological comparison of Azospirillum spp. isolated from Rhizoctonia solani mycelia, wheat rhizosphere, and human skin wounds. Can J Microbiol 50:291–297

    Article  PubMed  Google Scholar 

  • Cooke RP, O’Neill WA, Xu J, Moore JE, Elborn JS (2007) Inquilinus limosus isolated from a cystic fibrosis patient: first UK report. Br J Biomed Sci 64:127–129

    CAS  PubMed  Google Scholar 

  • Couillerot O, Ramírez-Trujillo A, Walker V, Felten A, Jansa J, Maurhofer M, Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J, Moënne-Loccoz Y (2013) Comparison of prominent Azospirillum strains in AzospirillumPseudomonasGlomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649

    Article  CAS  PubMed  Google Scholar 

  • Croes C, Van Bastelaere E, DeClercq E, Eyers M, Vanderleyden J, Michiels K (1991) Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 26:83–93

    Article  CAS  PubMed  Google Scholar 

  • Croes CL, Moens S, van Bastelaere E, Vanderleyden J, Michiels KW (1993) The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J Gen Microbiol 139:2261–2269

    Article  CAS  Google Scholar 

  • Day JM, Dobereiner J (1976) Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol Biochem 8:45–50

    Article  CAS  Google Scholar 

  • De Smedt J, Bauwens M, Tytgat R, De Ley J (1980) Intra- and inter-generic similarities of ribosomal ribonucleic cistrons of free-living, nitrogen-fixing bacteria. Int J Syst Bacteriol 30:106–122

    Article  Google Scholar 

  • Dé I, Rolston KV, Han XY (2004) Clinical significance of Roseomonas species isolated from catheter and blood samples: analysis of 36 cases in patients with cancer. Clin Infect Dis 38:1579–1584

    Article  PubMed  Google Scholar 

  • Díaz-Cárdenas C, Patel BK, Baena S (2010) Tistlia consotensis gen. nov., sp. nov., an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Int J Syst Evol Microbiol 60:1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Yokota A (2002) Phylogenetic analysis of the genus Aquaspirillum based on 16S rRNA gene sequences. FEMS Microbiol Lett 212:165–169

    Article  CAS  PubMed  Google Scholar 

  • Do T, Tran VN, Kleiner D (2007a) Physiological versatility of the genus Rhodocista. Z Für Naturforschung C J Biosci 62:571

    CAS  Google Scholar 

  • Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA (2007b) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-β-hydroxyalkanoate. Biotechnol Bioeng 97:279–286

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28(9):871–879

    Article  Google Scholar 

  • Döbereiner J (1992) Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Ciênc E Cult 44:310–313

    Google Scholar 

  • Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in non-leguminous crop plants. Science Tech/Springer, Madison/New York

    Google Scholar 

  • Döbereiner J, Baldani VL, Reis VM (1995) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Fendrik et al. (eds). Azospirillum VI and related microorganisms. NATO ASI series. Vol. G 37 Springer, Berlin/Heidelberg, pp 3–14

    Google Scholar 

  • Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Beijing: Scientific Press (English translation)

    Google Scholar 

  • Dong C, Lai Q, Chen L, Sun F, Shao Z, Yu Z (2010) Oceanibaculum pacificum sp. nov., isolated from hydrothermal field sediment of the south-west Pacific Ocean. Int J Syst Evol Microbiol 60:219–222

    Article  CAS  PubMed  Google Scholar 

  • Duquesne K, Sturgis JN (2012) Shotgun genome sequence of the large purple photosynthetic bacterium Rhodospirillum photometricum DSM122. J Bacteriol 194:2380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duquesne K, Prima V, Ji B, Rouy Z, Médigue C, Talla E, Sturgis J (2012) Draft genome sequence of the purple photosynthetic bacterium Phaeospirillum molischianum DSM120, a particularly versatile bacterium. J Bacteriol 194:3559–3560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyall-Smith M (2008) The halohandbook. Protocols for haloarchaeal genetics. Version 7. Compiled and edited by Dr Mike Dyall-Smith. http://www.haloarchaea.com/resources/halohandbook/Halohandbook 2008 v7.pdf

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  CAS  PubMed  Google Scholar 

  • Dzyuba MV, Mardanov AV, Beletskii AV, Kolganova TV, Sukhacheva MV, Shelenkov AA, Gorlenko VM, Kuznetsov BB, Skryabin KG (2012) Reconstruction of iron metabolism pathways of bacteria Magnetospirillum aberrantis SpK spp. based on sequenced genome analysis. Dokl Biol Sci 444:202–205

    Article  CAS  PubMed  Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a new nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26

    Article  CAS  PubMed  Google Scholar 

  • Elmerich C (1983) Azospirillum genetics. In: Puhler A (ed) Molecular genetics of the bacteria-plant interaction. Spring, Berlin, pp 367–372

    Chapter  Google Scholar 

  • Elmerich C (1986) Azospirillum. Nitrogen Fixat 4:106–126

    CAS  Google Scholar 

  • Falk EC, Döbereiner J, Johnson JL, Krieg NR (1985) Deoxyribonucleic acid homology of Azospirillum amazonense Magalhães et al., 1984 and emendation of the description of the genus Azospirillum. Int J Syst Bacteriol 35:117–118

    Article  CAS  Google Scholar 

  • Falk EC, Johnson JL, Baldani VLD, Döbereiner J, Krieg NR (1986) Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. Int J Syst Bacteriol 36:80–85

    Article  CAS  Google Scholar 

  • Fasciglione G, Casanovas EM, Yommi A, Sueldo RJ, Barassi CA (2012) Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agric 92:2518–2523

    Article  CAS  PubMed  Google Scholar 

  • Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Van Leeuwenhoek 55:291–296

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Elmerich C (1981) Physiological properties and plasmid content of several strains of Azospirillum brasilense and A. lipoferum. Ann Microbiol (Paris) 132:3

    Google Scholar 

  • Frankel RB (2009) The discovery of magnetotactic/magnetosensitive bacteria. Chin J Oceanol Limnol 27:1–2

    Article  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franzmann PD, Skerman VBD (1981) Agitococcus lubricus gen. nov. sp. nov., a lipolytic, twitching coccus from freshwater. Int J Syst Bacteriol 31:177–183

    Article  Google Scholar 

  • Frolov EN, Belousova EV, Lavrinenko KS, Dubinina GA, Grabovich MY (2013) Capacity of Azospirillum thiophilum for lithotrophic growth coupled to oxidation of reduced sulfur compounds. Microbiology 82:271–279

    Article  CAS  Google Scholar 

  • Gest H, Kamen MD (1949) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558–559

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Pulicherla K, Rekha V, Raja PK, Rao KS (2012) Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal World. J Microbiol Biotechnol 28:2859–2869

    Article  CAS  Google Scholar 

  • Giesberger G (1947) Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum species. Antonie Van Leeuwenhoek 13:135–148

    Article  Google Scholar 

  • Gillis M, De Ley J (1980) Intra-and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 30:7–27

    Article  CAS  Google Scholar 

  • Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6:e21442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez-Balderas CD, Cochet N, Bert V, Tarnaud E, Sarde C-O (2014) 16S rDNA analysis of bacterial communities associated with the hyper accumulator Arabidopsis halleri grown on a Zn and Cd polluted soil. Eur J Soil Biol 60:16–23

    Article  CAS  Google Scholar 

  • Gorlenko VM, Dzyuba MV, Maleeva AN, Panteleeva AN, Kolganova TV, Kuznetsov BB (2011) Magnetospirillum aberrantis sp. nov., a new freshwater bacterium with magnetic inclusions. Microbiology 80:692–702

    Article  CAS  Google Scholar 

  • Guerin WF, Jones GE (1988) Two-stage mineralization of phenanthrene by estuarine enrichment cultures. Appl Environ Microbiol 54:929–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guest H, Favinger JL, Madigan MT (1985) Exploitation of N2-fixation capacity for enrichment of anoxygenic photosynthetic bacteria in ecological studies. FEMS Microbiol Lett 31:317–322

    Article  Google Scholar 

  • Guyoneaud R, Mouné S, Eatock C, Bothorel V, Hirschler-Réa A, Willison J, Duran R, Liesack W, Herbert R, Matheron R et al (2002) Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 178:315–324

    Article  CAS  PubMed  Google Scholar 

  • Haitiana K, Saito T, Okada M (2001) Distribution profiles of spermidine and homospermidine within the alpha subclass of the class Proteobacteria. Microbiol Cult Collect 17:3–12

    Google Scholar 

  • Halsall DM, Gibson AH (1985) Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans. Appl Environ Microbiol 50(4):1021–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halsall DM, Turner GL, Gibson AH (1985) Straw and xylan utilization by pure cultures of nitrogen-fixing Azospirillum spp. Appl Environ Microbiol 49(2):423–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han XY, Pham AS, Tarrand JJ, Rolston KV, Helsel LO, Levett PN (2003) Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp nov and Roseomonas gilardii subsp rosea subsp nov. Am J Clin Pathol 120:256–264

    Article  PubMed  Google Scholar 

  • Hanert HH (1981) Genus VIII. Rhodovibrio Imhoff, Petri and Süling 1998, 797VP. In: Starr et al. (eds). The prokaryotes. Springer, Berlin, pp 509–515

    Google Scholar 

  • Helman Y, Burdman S, Okon Y (2011) Plant growth promotion by rhizosphere bacteria through direct effects. In: Rosenberg and Gophna (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin/Heidelberg, pp 89–103

    Google Scholar 

  • Helsel LO, Hollis DG, Steigerwalt AG, Levett PN (2006) Reclassification of Roseomonas fauriae Rihs et al. 1998 as a later heterotypic synonym of Azospirillum brasilense Tarrand et al. 1979. Int J Syst Evol Microbiol 56:2753–2755

    Article  CAS  PubMed  Google Scholar 

  • Hisada T, Okamura K, Hiraishi A (2007) Isolation and characterization of phototrophic purple nonsulfur bacteria from Chloroflexus and cyanobacterial mats in hot springs. Microb Environ 22:405–411

    Article  Google Scholar 

  • Hogue R, Graves M, Moler S, Janda J (2007) Pink-pigmented non-fermentative gram-negative rods associated with human infections: a clinical and diagnostic challenge. Infection 35:126–133

    Article  CAS  PubMed  Google Scholar 

  • Hütz A, Schubert K, Overmann J (2011) Thalassospira sp. isolated from the oligotrophic eastern Mediterranean Sea exhibits chemotaxis toward inorganic phosphate during starvation. Appl Environ Microbiol 77:4412–4421

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hylemon PB, Wells JS, Krieg NR, Jannasch HW (1973) The genus Spirillum: a taxonomic study. Int J Syst Bacteriol 23:340–380

    Article  CAS  Google Scholar 

  • Im W-T, Jung H-M, Cui Y-S, Liu Q-M, Zhang S-L, Lee S-T (2005) Cultivation of the three hundreds of bacterial species from the soil of the ginseng field and mining the novel lineage bacteria. In: Proceedings of the international meeting of the federation of Korean microbiological societies, abstract A035, p. 169. Seoul: Federation of Korean Microbiological Societies

    Google Scholar 

  • Imhoff JF (1988) Anoxygenic phototrophic bacteria. In: Austin B (ed) Methods in aquatic bacteriology. Wyley, New York, pp 207–240

    Google Scholar 

  • Imhoff JF (1992) The family Ectothiorhodospiraceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3222–3229

    Chapter  Google Scholar 

  • Imhoff JF (2005a) Genus incertae sedis XXVI. Rhodothalassium Imhoff, Petri and Süling 1998, 797VP. In: Brenner, Krieg, Staley and Garrity (Eds.) Bergey’s manual® of systematic bacteriology, 2nd edn. vol 2. Springer, New York, pp 228–229

    Google Scholar 

  • Imhoff JF (2005b) Genus VIII. Rhodovibrio Imhoff, Petri and Süling 1998, 797VP. In: Brenner, Krieg, Staley and Garrity (Eds.) Bergey’s manual® of systematic bacteriology, 2nd edn. vol 2. Springer, New York, pp 36–37

    Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    Article  CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1992) The genus Rhodospirillum and related genera. In: Ballow, Triiper, Dworkin, Harder and Schleifer (Eds.) The prokaryotes, 2nd edn. vol 3. Springer, New York, pp 2141–2155

    Google Scholar 

  • Imhoff J, Trüper H, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343

    Article  Google Scholar 

  • Imhoff JF, Petri R, Süling J (1998) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb, nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48:793–798

    Article  PubMed  Google Scholar 

  • Ji B, Zhang S-D, Arnoux P, Rouy Z, Alberto F, Philippe N, Murat D, Zhang W-J, Rioux J-B, Ginet N et al (2013) Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ Microbiol 16:525–544

    Article  PubMed  CAS  Google Scholar 

  • Juge C, Prévost D, Bertrand A, Bipfubusa M, Chalifour F-P (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157

    Article  Google Scholar 

  • Jung H-M, Lee J-S, Bae H-M, Yi T-H, Kim S-Y, Lee S-T, Im W-T (2011) Inquilinus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61:201–204

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A et al (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kars G, Gündüz U (2010) Towards a super H2 producer: improvements in photofermentative biohydrogen production by genetic manipulations. Int J Hydrog Energy 35:6646–6656

    Article  CAS  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil‐contaminated and nutrient‐supplemented sea water. Environ Microbiol 4(3):141–147

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Hoshino Y, Kuraishi H, Yamasato K (1992) Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 38:541–551

    Article  CAS  Google Scholar 

  • Kawasaki et al (1994) VALIDATION LIST no. 48. Int J Syst Bacteriol 44:182–183

    Google Scholar 

  • Kaye JZ, Baross JA (2004) Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. Appl Environ Microbiol 70(10):6220–6229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kern M, Klipp W, Klemme J-H (1994) Increased nitrogenase-dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum Appl. Environ Microbiol 60:1768–1774

    CAS  Google Scholar 

  • Khammas KM, Ageron E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Rev Microbiol 140:679–693

    CAS  Google Scholar 

  • Khatri I, Singh A, Korpole S, Pinnaka AK, Subramanian S (2013) Draft genome sequence of an alphaproteobacterium, Caenispirillum salinarum AK4T, isolated from a solar saltern. Genome Announc 1:e00199–e001912

    PubMed Central  PubMed  Google Scholar 

  • Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55

    Article  CAS  Google Scholar 

  • Kodama Y, Stiknowati LI, Ueki A, Ueki K, Watanabe K (2008) Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 58:711–715

    Article  CAS  PubMed  Google Scholar 

  • Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D (2012) Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14:1709–1721

    Article  CAS  PubMed  Google Scholar 

  • Kompantseva EI, Gorlenko VM (1984) A new species of the temperate halophilic purple bacterium Rhodospirillum mediosalinum sp. nov. Mikrobiologiya 53:954–961

    CAS  Google Scholar 

  • Kriechbaumer V, Park WJ, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2007) Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis. J Exp Bot 58:4225–4233

    Article  CAS  PubMed  Google Scholar 

  • Krieg NR, Döbereiner J (1984) Genus Azospirillum. In: Krieg and Holt (eds.) Bergey’s manual of systematic bacteriology, vol 1, pp 94–104

    Google Scholar 

  • Krohn-Molt I, Wemheuer B, Alawi M, Poehlein A, Güllert S, Schmeisser C, Pommerening-Röser A, Grundhoff A, Daniel R, Hanelt D, Streit WR (2013) Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl Environ Microbiol 79:6196–6206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kryachko Y, Dong X, Sensen CW, Voordouw G (2012) Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie Van Leeuwenhoek 101:493–506

    Article  PubMed  Google Scholar 

  • Kumar PA, Aparna P, Srinivas T, Sasikala C, Ramana CV (2008) Rhodospirillum sulfurexigens sp. nov., a phototrophic alphaproteobacterium requiring a reduced sulfur source for growth. Int J Syst Evol Microbiol 58:2917–2920

    Article  CAS  Google Scholar 

  • Kumar PA, Srinivas TNR, Takaichi S, Maoka T, Sasikala C, Ramana CV (2009) Phaeospirillum chandramohanii sp. nov., a phototrophic alphaproteobacterium with carotenoid glycosides. Int J Syst Evol Microbiol 59:2089–2093

    Article  CAS  Google Scholar 

  • Kuttel M, Ravenscroft N, Foschiatti M, Cescutti P, Rizzo R (2012) Conformational properties of two exopolysaccharides produced by Inquilinus limosus, a cystic fibrosis lung pathogen. Carbohydr Res 350:40–48

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, So RB, Watanabe I (1987) Composition of Azospirillum species associated with wetland rice plant grown in different soils. Plant Soil 102(1):127–129

    Article  Google Scholar 

  • Lai Q, Shao Z (2012a) Genome sequence of Oceanibaculum indicum type strain P24. J Bacteriol 194:6942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lai Q, Shao Z (2012b) Genome sequence of Thalassospira profundimaris type strain WP0211. J Bacteriol 194:6956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lai Q, Yuan J, Gu L, Shao Z (2009a) Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:1278–1281

    Article  CAS  PubMed  Google Scholar 

  • Lai Q, Yuan J, Wu C, Shao Z (2009b) Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 59:1733–1737

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi KVNS, Divyasree B, Ramprasad EVV, Sasikala C, Ramana V (2014) Reclassification of Rhodospirillum photometricum (Molisch, 1907), Rhodospirillum sulfurexigens (Anil Kumar et al., 2008), Rhodospirillum oryzae (Lakshmi et al., 2013) into a new genus Pararhodospirillum gen. nov., as Pararhodospirillum photometricum comb. nov., Pararhodospirillum sulfurexigens comb. nov. and Pararhodospirillum oryzae comb. nov. and emended description of the genus Rhodospirillum. Int J Syst Evol Microbiol 64:1154–1159

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi KVNS, Sasikala C, Takaichi S, Ramana CV (2011a) Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. Int J Syst Evol Microbiol 61:1656–1661

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi KVNS, Sasikala C, Kumar GVA, Chandrasekaran R, Ramana CV (2011b) Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. Int J Syst Evol Microbiol 61:828–833

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi K, Sasikala C, Ramaprasad E, Ramana CV (2013) Rhodospirillum oryzae sp. nov., a phototrophic bacterium isolated from rhizosphere soil of paddy. Int J Syst Evol Microbiol 63:3050–3055

    Article  CAS  PubMed  Google Scholar 

  • Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V, Kuever J, Lysenko A, Grabovich M (2010) Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 60:2832–2837

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77:497–526

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Schmidt ML, Viloria N, Trubitsyn D, Schüler D, Bazylinski DA (2012a) Insight into the evolution of magnetotaxis in Magnetospirillum spp., based on mam gene phylogeny. Appl Environ Microbiol 78:7238–7248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Viloria N, Schmidt ML, Pósfai M, Frankel RB, Bazylinski DA (2012b) Novel magnetite producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J 6:440–450

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Almeida LGP, Vasconcelos ATR, Lins U, Schüler D, Ginet N, Pignol D et al (2013a) Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol 15:2267–2274

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, de Vasconcelos ATR, Kube M, Reinhardt R, Lins U, Pignol D, Schuler D, Bazylinski DA, Ginet N (2013b) Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol 15:2712–2735

    Article  PubMed  CAS  Google Scholar 

  • Lenchi N, İnceoğlu Ö, Kebbouche-Gana S, Gana ML, Llirós M, Servais P, García-Armisen T (2013) Diversity of microbial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene amplicon 454 pyrosequencing. PLoS One 8:e66588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lerner A, Castro-Sowinski S, Valverde A, Lerner H, Dror R, Okon Y, Burdman S (2009) The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology 155:4058–4068

    Article  CAS  PubMed  Google Scholar 

  • Leyva LA, Bashan Y (2008) Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd. Plant Physiol Biochem 46:898–904

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Formation of poly (3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421

    Article  CAS  Google Scholar 

  • Lin SY, Young CC, Hupfer H, Siering C, Arun AB, Chen WM, Yassin AF (2009) Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 59(4):761–765, List No. 40-F

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Shen FT, Young LS, Zhu ZL, Chen WM, Young CC (2012) Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 62(Pt 5):1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA, Shen FT, Young CC (2013) Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 63(Pt 10):3762–3768

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J (2013) Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. MicrobiologyOpen 2:492–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wu Y, Li L, Ma Y, Shao Z (2007) Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov. Int J Syst Evol Microbiol 57:316–320

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jin J-H, Liu Y-H, Zhou Y-G, Liu Z-P (2010) Dongia mobilis gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a sequencing batch reactor for treatment of malachite green effluent. Int J Syst Evol Microbiol 60:2780–2785

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Dai J, Liu Y, Cai F, Wang Y, Rahman E, Fang C (2011) Desertibacter roseus gen. nov., sp. nov., a gamma radiation-resistant bacterium in the family Rhodospirillaceae, isolated from desert sand. Int J Syst Evol Microbiol 61:1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Lopez BR, Tinoco-Ojanguren C, Bacilio M, Mendoza A, Bashan Y (2012) Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environ Exp Bot 81:26–36

    Article  CAS  Google Scholar 

  • López-López A, Pujalte MJ, Benlloch S, Mata-Roig M, Rosselló-Mora R, Garay E, Rodríguez-Valera F (2002) Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the alpha-Proteobacteria. Int J Syst Evol Microbiol 52:1277–1283

    PubMed  Google Scholar 

  • Lu Y-K, Marden J, Han M, Swingley W, Mastrian S, Chowdhury S, Hao J, Helmy T, Kim S, Kurdoglu A et al (2010) Metabolic flexibility revealed in the genome of the cyst-forming α-1 proteobacterium Rhodospirillum centenum. BMC Genomics 11:325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo G, Shi Z, Wang H, Wang G (2012) Skermanella stibiiresistens sp. nov., a highly antimony-resistant bacterium isolated from coal-mining soil, and emended description of the genus Skermanella. Int J Syst Evol Microbiol 62:1271–1276

    Article  CAS  PubMed  Google Scholar 

  • Mack EE, Mandelco L, Woese CR, Madigan MT (1993) Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodospirillum species. Arch Microbiol 160:363–371

    Article  CAS  Google Scholar 

  • Magalhães FM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Ci 55:417–430

    Google Scholar 

  • Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pašić L, Ventosa A (2012) Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microb Environ 27:87–93

    Article  Google Scholar 

  • Maratea D, Blakemore RP (1981) Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int J Syst Bacteriol 31:452–455

    Article  Google Scholar 

  • Marimuthu S, Ramamoorthy V, Samiyappan R, Subbian P (2013) Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. J Phytopathol 161:405–411

    Article  Google Scholar 

  • Martin-Didonet CC, Chubatsu LS, Souza EM, Kleina M, Rego FG, Rigo LU, Yates MG, Pedrosa FO (2000) Genome structure of the genus Azospirillum. J Bacteriol 182:4113–4116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mascle-Allemand C, Duquesne K, Lebrun R, Scheuring S, Sturgis JN (2010) Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum. Proc Natl Acad Sci USA 107:5357–5362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maszenan AM, Seviour RJ, Patel BKC, Rees GN, McDougall BM (1997) Amaricoccus gen. nov., a gram-negative coccus occurring in regular packages or tetrads, Isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. Int J Syst Bacteriol 47(3):727–734

    Article  CAS  PubMed  Google Scholar 

  • Maszenan AM, Seviour RJ, Patel BKC, Janssen PH, Wanner J (2005) Defluvicoccus vanus gen. nov., sp. nov., a novel Gram-negative coccus/coccobacillus in the “Alphaproteobacteria”from activated sludge. Int J Syst Evol Microbiol 55:2105–2111

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26(4):328–332

    CAS  Google Scholar 

  • Matsunaga T, Sakaguchi T, Tadakoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655

    CAS  Google Scholar 

  • Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166

    Article  CAS  PubMed  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLean TW, Rouster-Stevens K, Woods CR, Shetty AK (2006) Catheter-related bacteremia due to Roseomonas species in pediatric hematology/oncology patients. Pediatr Blood Cancer 46:514–516

    Article  PubMed  Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007a) Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57(3):620–624

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007b) Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 57(12):2805–2809

    Article  CAS  PubMed  Google Scholar 

  • Meldrum FC, Mann S, Heywood BR, Frankel RB, Bazylinski DA (1993) Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proc R Soc Lond B Biol Sci 251:237–242

    Article  Google Scholar 

  • Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26(7):1278–1284

    Article  CAS  Google Scholar 

  • Meyer RL, Saunders AM, Blackall LL (2006) Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing. Microbiology 152:419–429

    Article  CAS  PubMed  Google Scholar 

  • Michaelidou U, Achenbach LA, Coates JD (2000) Isolation and characterization of two novel (per)chlorate-reducing bacteria from swine waste lagoons. In: ET Urbansky (ed.). Perchlorate in the environment, vol 57. Kluwer/Plenum, New York, pp 271–283

    Google Scholar 

  • Michiels K, Croes C, Vanderleyden J (1991) Azospirillum brasilense polar flagellum functions as a wheat root adhesin. J Gen Microbiol 137:2241–2246

    Article  CAS  Google Scholar 

  • Miller TL, Wolin M (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molisch H (1907) Die Purpurbakterien nach neuen Untersuchungen: eine mikrobiologische Studie. Gustav Fischer, Jena

    Google Scholar 

  • Munk AC, Copeland A, Lucas S, Lapidus A, Del Rio TG, Barry K, Detter JC, Hammon N, Israni S, Pitluck S et al (2011) Complete genome sequence of Rhodospirillum rubrum type strain (S1T). Stand Genomic Sci 4:293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakade D (2013) Halotolerent Azospirillum lipoferum N-29 as a biofertilizer for saline soils. J Pure Appl Microbiol 7:795–801

    CAS  Google Scholar 

  • Naresh M, Das S, Mishra P, Mittal A (2012) The chemical formula of a magnetotactic bacterium. Biotechnol Bioeng 109:1205–1216

    Article  CAS  PubMed  Google Scholar 

  • Navarro JB, Moser DP, Flores A, Ross C, Rosen MR, Dong H, Hedlund BP (2009) Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake. Microb Ecol 57(2):307–320

    Article  PubMed  Google Scholar 

  • Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    Article  CAS  Google Scholar 

  • Nissen H, Dundas ID (1984) Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch Microbiol 138:251–256

    Article  CAS  Google Scholar 

  • Ntougias S (2014) Phylogeny and ecophysiological features of prokaryotes isolated from temporary saline tidal pools. Ann Microbiol 64:599–609

    Article  Google Scholar 

  • Oda Y, Wanders W, Huisman LA, Meijer WG, Gottschal JC, Forney LJ (2002) Genotypic and phenotypic diversity within species of purple nonsulfur bacteria isolated from aquatic sediments. Appl Environ Microbiol 68:3467–3477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamura Y, Takeyama H, Sekine T, Sakaguchi T, Wahyudi AT, Sato R, Kamiya S, Matsunaga T (2003) Design and application of a new cryptic-plasmid-based shuttle vector for Magnetospirillum magneticum. Appl Environ Microbiol 69:4274–4277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okon Y, Itzigsohn R (1992) Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. FEMS Microbiol Lett 103(2):131–139

    CAS  Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16

    Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic application of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira ALM, de Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284(1–2):23–32

    Article  CAS  Google Scholar 

  • Overmann J, Fischer U, Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157:329–335

    Article  CAS  Google Scholar 

  • Paoletti LC, Blakemore RP (1986) Hydroxamate production by Aquaspirillum magnetotacticum. J Bacteriol 167:73–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paterek JR, Paynter M (1988) Populations of anaerobic phototrophic bacteria in a Spartina alterniflora salt marsh. Appl Environ Microbiol 54:1360–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patriquin DG, Döbereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol Otawa 29:900–915

    Article  Google Scholar 

  • Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56(6):1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288

    Article  CAS  Google Scholar 

  • Pfennig N, Trüper HG (1971a) Type and neotype strains of the species of phototrophic bacteria maintained in pure culture. Int J Syst Bacteriol 21:19–24

    Article  Google Scholar 

  • Pfennig N, Trüper HG (1971b) Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 21:17–18

    Article  Google Scholar 

  • Pfennig N, Trüper HG (1974) Rhodospirillales. In: Buchanan and Gibbons (ed.) manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 25–64

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Krieg and Holt (Eds). The prokaryotes. Springer, Berlin, pp 926–940

    Google Scholar 

  • Pfennig N, Truper HG (1992) The family Chromatiaceae. In: Balows et al. (eds). The prokaryotes, 2nd edn. Springer, New York, pp 3200–3221

    Google Scholar 

  • Pfennig N, Lünsdorf H, Süling J, Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168:39–45

    Article  CAS  PubMed  Google Scholar 

  • Pino M, Conza J, Di Revale S, Gutkind G (2012) Putative mechanism of resistance detection of Inquilinus limosus by a full genome sequencing approach

    Google Scholar 

  • Pitulle C, Citron DM, Bochner B, Barbers R, Appleman MD (1999) Novel bacterium isolated from a lung transplant patient with cystic fibrosis. J Clin Microbiol 37:3851–3855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plotnikova EG, Anan’ina LN, Krausova VI, Ariskina EV, Prisyazhnaya NV, Lebedev AT, Demakov VA, Evtushenko LI (2011) Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium. Microbiology 80:703–712

    Article  CAS  Google Scholar 

  • Pósfai M, Lefèvre CT, Trubitsyn D, Bazylinski DA, Frankel RB (2013) Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Front Microbiol 4:344

    Google Scholar 

  • Pretorius WA (1963) A systematic study of the genus Spirillum which occurs in oxidation ponds, with a description of a new species. J Gen Microbiol 32:403–408

    Article  CAS  PubMed  Google Scholar 

  • Pycke BF, Crabbé A, Verstraete W, Leys N (2010) Characterization of triclosan-resistant mutants reveals multiple antimicrobial resistance mechanisms in Rhodospirillum rubrum S1H. Appl Environ Microbiol 76:3116–3123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahalkar M, Bahulikar RA, Deutzmann JS, Kroth PG, Schink B (2012) Elstera litoralis gen. nov., sp. nov., isolated from stone biofilms of Lake Constance, Germany. Int J Syst Evol Microbiol 62:1750–1754

    Article  CAS  PubMed  Google Scholar 

  • Raj PS, Chakravarthy SK, Ramaprasad EVV, Sasikala C, Ramana CV (2012) Phaeospirillum tilakii sp. nov., a phototrophic alphaproteobacterium isolated from aquatic sediments. Int J Syst Evol Microbiol 62:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51

    Article  Google Scholar 

  • Reis Junior FB, Reis VM, dos Santos Teixeira KR (2006) Restrição do 16S-23S DNAr intergênico para avaliação da diversidade de Azospirillum amazonense isolado de Brachiaria spp. Pesq Agropec Bras Brasília 41(3):431–438

    Article  Google Scholar 

  • Richter M, Kube M, Bazylinski DA, Lombardot T, Glöckner FO, Reinhardt R, Schüler D (2007) Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol 189:4899–4910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ritika C, Suresh K, Kumar PA (2012) Caenispirillum salinarum sp. nov., a member of the family Rhodospirillaceae isolated from a solar saltern. Int J Syst Evol Microbiol 62:1698–1702

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues Neto J, Malavolta VA Jr, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12:32

    Google Scholar 

  • Rubiano-Labrador C, Bland C, Miotello G, Guérin P, Pible O, Baena S, Armengaud J (2014) Proteogenomic insights into salt tolerance by a halotolerant alpha-proteobacterium isolated from an Andean saline spring. J Proteomics 97:36–47

    Article  CAS  PubMed  Google Scholar 

  • Rudney JD, Xie H, Rhodus NL, Ondrey FG, Griffin TJ (2010) A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol Oral Microbiol 25:38–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salamone IEG, Funes JM, Salvo LPD, Escobar-Ortega JS, D’Auria F, Ferrando L, Fernandez-Scavino A (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204

    Article  Google Scholar 

  • Salvador-García C, Yagüe-Guirao G, Pastor-Vivero MD, Sáez-Nieto JA (2013) Chronic colonization of Inquilinus limosus in a patient with cystic fibrosis: first report in Spain. Enferm Infecc Microbiol Clin 31:414–415

    Article  PubMed  Google Scholar 

  • Sant’Anna F, Almeida L, Cecagno R, Reolon L, Siqueira F, Machado M, Vasconcelos A, Schrank I (2011) Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genomics 12:409

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sarig S, Okon Y, Blum A (1992) Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J Plant Nutr 15(6–7):805–819

    Article  Google Scholar 

  • Saxena B, Modi M, Modi VV (1986) Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J Gen Microbiol 132(8):2219–2224

    CAS  Google Scholar 

  • Scheifer KH, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

    Article  Google Scholar 

  • Scheifer et al (1992) VALIDATION LIST no. 40. Int J Syst Bacteriol 42:191–192

    Google Scholar 

  • Schmoldt S, Latzin P, Heesemann J, Griese M, Imhof A, Hogardt M (2006) Clonal analysis of Inquilinus limosus isolates from six cystic fibrosis patients and specific serum antibody response. J Med Microbiol 55:1425–1433

    Article  CAS  PubMed  Google Scholar 

  • Schneider D, Arp G, Reimer A, Reitner J, Daniel R (2013) Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, central Pacific. PLoS One 8:e66662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307

    Article  PubMed  Google Scholar 

  • Schultz J, Weaver P (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149:181–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schut F, de Vries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA, Button DK (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seebach D, Züger MF (1984) On the preparation of methyl and ethyl (R)-(−)-3-hydroxy-valerate by depolymerization of a mixed PHB/PHV biopolymer. Tetrahedron Lett 25:2747–2750

    Article  CAS  Google Scholar 

  • Serelis J, Papaparaskevas J, Stathi A, Sawides AL, Karagouni AD, Tsakris A, Pangalis A (2013) Granulomatous infection of the hand and wrist due to Azospirillum spp. Diagn Microbiol Infect Dis 76:513–515

    Article  PubMed  Google Scholar 

  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Ignacimuthu S (2000) Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr Sci 79(5):565–567

    CAS  Google Scholar 

  • Sghaier H, Ghedira K, Benkahla A, Barkallah I (2008) Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria. BMC Genomics 9:297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shi B-H, Arunpairojana V, Palakawong S, Yokota A (2002) Tistrella mobilis gen. nov., sp. nov., a novel polyhydroxyalkanoate-producing bacterium belonging to α-Proteobacteria. J Gen Appl Microbiol 48:335–343

    Article  CAS  PubMed  Google Scholar 

  • Simmons SL, Edwards KJ (2007) Geobiology of magnetotactic bacteria. In: Magnetoreception and magnetosomes in bacteria. Springer, New York, pp 77–102

    Google Scholar 

  • Sizova MV, Panikov NS, Spiridonova EM, Slobodova NV, Tourova TP (2007) Novel facultative anaerobic acidotolerant Telmatospirillum siberiense gen. nov. sp. nov. isolated from mesotrophic fen. Syst Appl Microbiol 30:213–220

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA et al (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:255–420

    Google Scholar 

  • Skerman VBD, Sly LI, Williamson M-L (1983) Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. Int J Syst Bacteriol 33:300–308

    Article  Google Scholar 

  • Skvortsov IM, Ignatov VV (1998) Extracellular polysaccharides and polysaccharide‐containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microbiol Lett 165(2):223–229

    Article  CAS  PubMed  Google Scholar 

  • Sly LI, Stackebrandt E (1999) Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int J Syst Bacteriol 49:541–544

    Article  Google Scholar 

  • Smith R, West T, Gibbons W (2008) Rhodospirillum rubrum: utilization of condensed corn solubles for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production. J Appl Microbiol 104:1488–1494

    Article  CAS  PubMed  Google Scholar 

  • Sohn SS, Rosen EL, Bode JW (2004) N-heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J Am Chem Soc 126(44):14370–14371

    Article  CAS  PubMed  Google Scholar 

  • Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sorokina AY, Chernousova EY, Dubinina GA (2012) Ferrovibrio denitrificans gen. nov., sp. nov., a novel neutrophilic facultative anaerobic Fe(II)-oxidizing bacterium. FEMS Microbiol Lett 335:19–25

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Star L, Matan O, Dardanelli MS, Kapulnik Y, Burdman S, Okon Y (2012) The Vicia sativa spp. nigraRhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Plant Soil 356:165–174

    Article  CAS  Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38:321–325

    Article  Google Scholar 

  • Steenhoudt O, Keijers V, Okon Y, Vanderleyden J (2001) Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch Microbiol 175:344–352

    Article  CAS  PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stets MI, Pinto AS Jr, Huergo LF, de Souza EM, Guimarães VF, Alves AC, Cruz LM (2013) Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J Biotechnol 165(3):167–174

    Article  CAS  PubMed  Google Scholar 

  • Struthers M, Wong J, Janda JM (1996) An initial appraisal of the clinical significance of Roseomonas species associated with human infections. Clin Infect Dis 23:729–733

    Article  CAS  PubMed  Google Scholar 

  • Sugamata Y, Uchiyama R, Honda T, Tanaka T, Matsunaga T, Yoshino T (2013) Functional expression of thyroid-stimulating hormone receptor on nano-sized bacterial magnetic particles in Magnetospirillum magneticum AMB-1. Int J Mol Sci 14:14426–14438

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tarand JJ, Krieg NR, Döbereiner J (1979) Validation of the publication of new names and new combinations previously published outside the IJSB. Int J Syst Bacteriol 29:967–980, List No. 2

    Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  • Terasaki Y (1973) Studies on the genus Spirillum Ehrenberg. II. Comments on type and reference strains of Spirillum and description of new species and new subspecies. Bull Suzugamine Women’s Coll Nat Sci 17:1–71

    Google Scholar 

  • Terasaki Y (1979) Transfer of five species and two subspecies of Spirillum to other genera (Aquaspirillum and Oceanospirillum), with emended descriptions of the species and subspecies. Int J Syst Bacteriol 29:130–144

    Article  Google Scholar 

  • Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746

    Article  CAS  PubMed  Google Scholar 

  • Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37(2):174–178

    Article  CAS  PubMed  Google Scholar 

  • Tiana Y, Yuea T, Yuana Y, Somab PK, Loa YM (2010) Improvement of cultivation medium for enhanced production of coenzyme Q10 by photosynthetic Rhodospirillum rubrum. Biochem Eng J 51:160–166

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet. Appl Environ Microbiol 37:1016–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsubouchi T, Ohta Y, Haga T, Usui K, Shimane Y, Mori K, Tanizaki A, Adachi A, Kobayashi K, Yukawa K, Takagi E, Tame A, Uematsu K, Maruyama T, Hatada Y (2014) Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov., isolated from a decaying bamboo sunken in the marine environment, and emended description of the genus Thalassospira. Int J Syst Evol Microbiol 64:107–115

    Article  CAS  PubMed  Google Scholar 

  • Tugarova AV, Vetchinkina EP, Loshchinina EA, Shchelochkov AG, Nikitina VE, Kamnev AA (2013) The ability of the rhizobacterium Azospirillum brasilense to reduce selenium (IV) to selenium (0). Microbiology 82(3):352–355

    Article  CAS  Google Scholar 

  • Turan M, Gulluce M, von Wirén N, Sahin F (2012) Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey. J Plant Nutr Soil Sci 175:818–826

    Article  CAS  Google Scholar 

  • Uffen R (1973) Growth properties of Rhodospirillum rubrum mutants and fermentation of pyruvate in anaerobic, dark conditions. J Bacteriol 116:874–884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmer HW, Gross RA, Posada M, Weisbach P, Fuller RC, Lenz RW (1994) Bacterial production of poly (β-hydroxyalkanoates) containing unsaturated repeating units by Rhodospirillum rubrum. Macromolecules 27:1675–1679

    Article  CAS  Google Scholar 

  • Um S, Pyee Y, Kim E-H, Lee SK, Shin J, Oh D-C (2013) Thalassospiramide G, a new γ-amino-acid-bearing peptide from the marine bacterium Thalassospira sp. Mar Drugs 11:611–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urios L, Michotey V, Intertaglia L, Lesongeur F, Lebaron P (2008) Nisaea denitrificans gen. nov., sp. nov. and Nisaea nitritireducens sp. nov., two novel members of the class Alphaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 58(10):2336–2341

    Article  CAS  PubMed  Google Scholar 

  • Urios L, Michotey V, Intertaglia L, Lesongeur F, Lebaron P (2010) Thalassobaculum salexigens sp. nov., a new member of the family Rhodospirillaceae from the NW Mediterranean Sea, and emended description of the genus Thalassobaculum. Int J Syst Evol Microbiol 60:209–213

    Article  CAS  PubMed  Google Scholar 

  • Van Niel C (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8:1

    PubMed Central  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Volpin H, Burdman S, Castro-Sowinski S, Kapulnik Y, Okon Y (1996) Inoculation with Azospirillum Increased Exudation of Rhizobial nocí-Gene Inducers by Alfalfa Roots. Mol Plant-Microbe Interact 9:388–394

    Article  CAS  Google Scholar 

  • Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Müller A, Weiler EW, Piotrowski M (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 212:508–516

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-X, Liu J-H, Zhang X-X, Chen Y-G, Wang Z-G, Chen Y, Li Q-Y, Peng Q, Cui X-L (2009) Fodinicurvata sediminis gen. nov., sp. nov. and Fodinicurvata fenggangensis sp. nov., poly-β-hydroxybutyrate-producing bacteria in the family Rhodospirillaceae. Int J Syst Evol Microbiol 59:2575–2581

    Article  CAS  PubMed  Google Scholar 

  • Wang G-S, Grammel H, Abou-Aisha K, Sägesser R, Ghosh R (2012) High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 78:7205–7215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216

    Article  CAS  PubMed  Google Scholar 

  • Weeger W, Lievremont D, Perret M, Lagarde F, Hubert J-C, Leroy M, Lett M-C (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149

    Article  CAS  PubMed  Google Scholar 

  • Wellinghausen N, Essig A, Sommerburg O (2005) Inquilinus limosus in patients with cystic fibrosis, Germany. Emerg Infect Dis 11:457–459

    Article  PubMed Central  PubMed  Google Scholar 

  • Weon H-Y, Kim B-Y, Hong S-B, Joa J-H, Nam S-S, Lee KH, Kwon S-W (2007) Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella. Int J Syst Evol Microbiol 57:1539–1542

    Article  CAS  PubMed  Google Scholar 

  • Weyant RS, Whitney AM (2005) Genus XIII. Roseomonas. In: Brenner, Krieg, Staley and Garrity (Eds.) Bergey’s manual® of systematic bacteriology, 2nd edn. vol 2. Springer, New York, pp 88–92

    Google Scholar 

  • Williams TM, Unz RF (1985) Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains. Appl Environ Microbiol 49(4):887–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA (2012) Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 62:2443–2450

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Zhulin IB (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wolfe RS, Thauer RK, Pfennig N (1987) A ‘capillary racetrack’method for isolation of magnetotactic bacteria. FEMS Microbiol Lett 45(1):31–35

    Article  Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

  • Xie C-H, Yokota A (2005) Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Ulrich LE, Zhulin IB, Alexandre G (2010) PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Proc Natl Acad Sci 107(5):2235–2240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Kersten RD, Nam S-J, Lu L, Al-Suwailem AM, Zheng H, Fenical W, Dorrestein PC, Moore BS, Qian P-Y (2012) Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J Am Chem Soc 134:8625–8632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada K, Fukuda W, Kondo Y, Miyoshi Y, Atomi H, Imanaka T (2011) Constrictibacter antarcticus gen. nov., sp. nov., a cryptoendolithic micro-organism from Antarctic white rock. Int J Syst Evol Microbiol 61:1973–1980

    Article  CAS  PubMed  Google Scholar 

  • Yoon J-H, Kang S-J, Park S, Oh T-K (2007a) Caenispirillum bisanense gen. nov., sp. nov., isolated from sludge of a dye works. Int J Syst Evol Microbiol 57:1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Yoon J-H, Kang S-J, Park S, Lee S-Y, Oh T-K (2007b) Reclassification of Aquaspirillum itersonii and Aquaspirillum peregrinum as Novispirillum itersonii gen. nov., comb. nov. and Insolitispirillum peregrinum gen. nov., comb. nov. Int J Syst Evol Microbiol 57:2830–2835

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Hupfer H, Siering C, Ho MJ, Arun AB, Lai WA, Yassin AF (2008) Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58(4):959–963

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122(1):41–48

    Article  CAS  Google Scholar 

  • Zhang D, Yang H, Zhang W, Huang Z, Liu S-J (2003) Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 53:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang Q, Luo X, Fang C, Zhang Q, Tang Y (2007) Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch Microbiol 188:411–419

    Article  CAS  PubMed  Google Scholar 

  • Zhang GI, Hwang CY, Cho BC (2008) Thalassobaculum litoreum gen. nov., sp. nov., a member of the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 58:479–485

    Article  CAS  PubMed  Google Scholar 

  • Zhang D-C, Liu H-C, Zhou Y-G, Schinner F, Margesin R (2011) Tistrella bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2227–2230

    Article  CAS  PubMed  Google Scholar 

  • Zhao H-P, Wang L, Ren J-R, Li Z, Li M, Gao H-W (2008) Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5. J Hazard Mater 152:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wang H, Li R, Mao X (2010) Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 60:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Wei W, Wang X, Xu L, Lai R (2009) Azospirillum palatum sp. nov., isolated from forest soil in Zhejiang province, China. J Gen Appl Microbiol 55(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Han L, Wang Y, Yang G, Zhuang L, Hu P (2013) Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(Pt 7):2618–2624

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of INCT-FBN, CNPq, FAPERJ, as well as EMBRAPA Agrobiologia and Helmholtz Zentrum München is greatly acknowledged. The chapter was prepared with contributions from all of the authors and they contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ivo Baldani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Baldani, J.I. et al. (2014). The Family Rhodospirillaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_300

Download citation

Publish with us

Policies and ethics