Skip to main content

Hydrocarbon-Degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Hydrocarbon-degrading members of the Sphingomonadaceae (Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis) are common gram-negative, aerobic organisms that have been isolated from a wide variety of environments, including temperate and polar soils, marine sediments, and plant tissues where they occur as endophytes. They degrade a broad range of mono- and polycyclic aromatic compounds, and the genetics and enzymology of these processes have been elucidated in some detail. In sphingomonads the biodegradation gene loci are often widely distributed on the genome and not co-localized as in other hydrocarbon-degrading genera, which has hindered genetic manipulation, but they are nonetheless potent candidates for bioremediation applications. Sphingomonad strains are easily cultivable, but recent results suggest that their role in degradation of recalcitrant aromatics in contaminated soils in situ may be less than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10: 171–179.

    Article  PubMed  CAS  Google Scholar 

  • Aislabie JM, Balks MR, Foght JM, Waterhouse EJ (2004) Hydrocarbon spills on Antarctic soils: Effects and management. Environ Sci Technol 38: 1265–1274.

    Article  PubMed  CAS  Google Scholar 

  • Armengaud J, Happe B, Timmis KN (1998) Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: Catabolic genes dispersed on the genome. J Bacteriol 180: 3954–3966.

    PubMed  CAS  Google Scholar 

  • Basta T, Keck A, Klein J, Stolz A (2004) Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J Bacteriol 186: 3862–3872.

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens L, Springael D, Dejonghe W, Wattiau P, Verachtert H, Diels L (2001) A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes. Res Microbiol 152: 849–859.

    Article  PubMed  CAS  Google Scholar 

  • Begonja Kolar A, Hršak D, Fingler S, Ćetković H, Petrić I, Udiković Kolić N (2007) PCB-degrading potential of aerobic bacteria enriched from marine sediments. Int Biodeter Biodegr 60: 16–24.

    Article  CAS  Google Scholar 

  • Brown EJ, Pignatello JJ, Martinson MM, Crawford RL (1986) Pentachlorophenol degradation - a pure bacterial culture and an epilithic microbial consortium. Appl Environ Microbiol 52: 92–97.

    PubMed  CAS  Google Scholar 

  • Bünz PV, Cook AM (1993) Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: Angular dioxygenation by a three-component enzyme system. J Bacteriol 175: 6467–6475.

    PubMed  Google Scholar 

  • Bünz PV, Buck M, Hebenbrock S, Fortnagel P (1999) Stability of mutations in a Sphingomonas strain. Can J Microbiol 45: 404–407.

    Article  PubMed  Google Scholar 

  • Cavicchioli R, Fegatella F, Ostrowski M, Eguchi M, Gottschal J (1999) Sphingomonads from marine environments. J Ind Microbiol Biotechnol 23: 268–272.

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Ostrowski M, Fegatella F, Goodchild A, Guixa-Boixereu N (2003) Life under nutrient limitation in oligotrophic marine environments: An eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb Ecol 45: 203–217.

    Article  PubMed  CAS  Google Scholar 

  • Chadhain SMN, Moritz EM, Kim E, Zylstra GJ (2007) Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol 34: 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Cho OY, Choi KY, Zylstra GJ, Kim YS, Kim SK, Lee JH, Sohn HY, Kwon GS, Kim YM, Kim E (2005) Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem Biophys Res Commun 327: 656–662.

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33: D294–D296.

    Article  PubMed  CAS  Google Scholar 

  • Colores GM, Schmidt SK (1999) Colonization of contaminated soil by an introduced bacterium: effects of initial pentachlorophenol levels on the survival of Sphingomonas chlorophenolica strain RA2. J Ind Microbiol Biotechnol 23: 326–331.

    Article  PubMed  CAS  Google Scholar 

  • Colores GM, Radehaus PM, Schmidt SK (1995) Use of a pentachlorophenol degrading bacterium to bioremediate highly contaminated soil. Appl Biochem Biotechnol 54: 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe M, Kertesz MA (2006) Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ Pollut 144: 228–237.

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe M, Kawasaki A, Fellows E, Kertesz MA (2006) Effect of inoculum pretreatment on survival, activity and catabolic gene expression of Sphingobium yanoikuyae B1 in an aged polycyclic aromatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 58: 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Dimitriou-Christidis P, Autenrieth RL, McDonald TJ, Desai AM (2007) Measurement of biodegradability parameters for single unsubstituted and methylated polycyclic aromatic hydrocarbons in liquid bacterial suspensions. Biotechnol Bioeng 97: 922–932.

    Article  PubMed  CAS  Google Scholar 

  • Endo R, Ohtsubo Y, Tsuda M, Nagata Y (2007) Identification and characterization of genes encoding a putative ABC-type transporter essential for utilization of gamma-hexachlorocyclohexane in Sphingobium japonicum UT26. J Bacteriol 189: 3712–3720.

    Article  PubMed  CAS  Google Scholar 

  • Euzeby JP (1997) List of bacterial names with standing in nomenclature: A folder available on the Internet. Int J Syst Bacteriol 47: 590–592 (List of Prokaryotic names with Standing in Nomenclature. Last full update: December 5–6, 2008, http://www.bacterio.net).

  • Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sa-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79: 889–900.

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson JK, Brockman FJ, Workman DJ, Li SW, Stevens TO (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic-compounds. Appl Environ Microbiol 57: 796–803.

    PubMed  CAS  Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas Isolates from the deep subsurface. Appl Environ Microbiol 61: 1917–1922.

    PubMed  CAS  Google Scholar 

  • Fredrickson JK, Balkwill DL, Romine MF, Shi T (1999) Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp. J Ind Microbiol Biotechnol 23: 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Gibson DT (1999) Beijerinckia sp strain B1: a strain by any other name. J Ind Microbiol Biotechnol 23: 284–293.

    Article  PubMed  CAS  Google Scholar 

  • Gibson DT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia species. Biochem Biophys Res Commun 50: 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Gilewicz M, Ni’matuzahroh, Nadalig T, Budzinski H, Doumenq P, Michotey V, Bertrand JC (1997) Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene. Appl Microbiol Biotechnol 48: 528–533.

    Article  PubMed  CAS  Google Scholar 

  • Godoy F, Vancanneyt M, Martinez M, Steinbuchel A, Swings J, Rehm BHA (2003) Sphingopyxis chilensis sp nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53: 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T (2002) Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211: 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Halden RU, Halden BG, Dwyer DF (1999) Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin from soils inoculated with Sphingomonas sp. strain RW1. Appl Environ Microbiol 65: 2246–2249.

    PubMed  CAS  Google Scholar 

  • Happe B, Eltis LD, Poth H, Hedderich R, Timmis KN (1993) Characterization of 2,2′,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-p-dioxin-degrading and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J Bacteriol 175: 7313–7320.

    PubMed  CAS  Google Scholar 

  • Hashidoko Y, Kitagawa E, Iwahashi H, Purnomo E, Hasegawa T, Tahara S (2007) Design of sphingomonad-detecting probes for a DNA array, and its application to investigate the behavior, distribution, and source of rhizospherous Sphingomonas and other sphingomonads inhabiting an-acid sulfate soil paddock in Kalimantan, Indonesia. Biosci Biotechnol Biochem 71: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Horvath M, Ditzelmüller G, Loidl M, Streichsbier F (1990) Isolation and characterization of a 2-(2,4-dichlorophenoxy) propionic acid-degrading soil bacterium. Appl Microbiol Biotechnol 33: 213–216.

    Article  PubMed  CAS  Google Scholar 

  • Imai R, Nagata Y, Fukuda M, Takagi M, Yano K (1991) Molecular-cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCL molecules from gamma-hexachlorocyclohexane. J Bacteriol 173: 6811–6819.

    PubMed  CAS  Google Scholar 

  • Johnsen AR, Winding A, Karlson U, Roslev P (2002) Linking of microorganisms to phenanthrene metabolism in soil by analysis of C-13-labeled cell lipids. Appl Environ Microbiol 68: 6106–6113.

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Hill RT (2003) Sediment microbes of deep-sea bioherms on the Northwest Shelf of Australia. Microb Ecol 46: 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64: 359–362.

    PubMed  CAS  Google Scholar 

  • Katayama Y, Nishikawa S, Murayama A, Yamasaki M, Morohoshi N, Haraguchi T (1988) The metabolism of biphenyl structures in lignin by the soil bacterium Pseudomonas paucimobilis Syk-6. FEBS Lett 233: 129–133.

    Article  CAS  Google Scholar 

  • Khan AA, Wang RF, Cao WW, Franklin W, Cerniglia CE (1996) Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp strain B1, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46: 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Zylstra GJ (1999) Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23: 294–302.

    Article  PubMed  Google Scholar 

  • Kim E, Aversano PJ, Romine MF, Schneider RP, Zylstra GJ (1996) Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains. Appl Environ Microbiol 62: 1467–1470.

    PubMed  CAS  Google Scholar 

  • Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K (2000) Proposal of Sphingomonadaceae fam, nov., consisting of Sphingomonas Yabuuchi et al, 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al, 1994, Porphyrobacter Fuerst et al, 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al, 1997, with the type genus Sphingomonas Yabuuchi et al, 1990. Microbiol Immunol 44: 563–575.

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150–163.

    Article  PubMed  CAS  Google Scholar 

  • Lamberts RF, Christensen JH, Mayer P, Andersen O, Johnsen AR (2008) Isomer-specific biodegradation of methylphenanthrenes by soil bacteria. Environ Sci Technol 42: 4790–4796.

    Article  PubMed  CAS  Google Scholar 

  • Leung KT, Cassidy MB, Shaw KW, Lee H, Trevors JT, LohmeierVogel EM, Vogel HJ (1997a) Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J Microbiol Biotechnol 13: 305–313.

    Article  CAS  Google Scholar 

  • Leung KT, Tresse O, Errampalli D, Lee H, Trevors JT (1997b) Mineralization of p-nitrophenol by pentachlorophenol-degrading Sphingomonas spp. FEMS Microbiol Lett 155: 107–114.

    Article  CAS  Google Scholar 

  • Leys N, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70: 1944–1955.

    Article  PubMed  CAS  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Top EM, Verstraete W, Springael D (2005) Culture independent detection of Sphingomonas sp EPA 505 related strains in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Microb Ecol 49: 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Wittich RM, Blasco R, Pieper DH, Timmis KN (1997) Superior survival and degradation of dibenzo-p-dioxin and dibenzofuran in soil by soil-adapted Sphingomonas sp strain RW1. Appl Microbiol Biotechnol 48: 109–114.

    Article  CAS  Google Scholar 

  • Moore FP, Barac T, Borrernans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29: 539–556.

    Article  PubMed  CAS  Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56: 1079–1086.

    PubMed  CAS  Google Scholar 

  • Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for gamma- hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23: 380–390.

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76: 741–752.

    Article  PubMed  CAS  Google Scholar 

  • Nörtemann B, Knackmuss HJ, Rast HG (1986) Bacterial communities degrading aminonaphthalene-2-sulfonates and hydroxynaphthalene-2-sulfonates.  Appl Environ Microbiol 52: 1195–1202.

    PubMed  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Prakash O, Lal R (2006) Description of Sphingobium fuliginis sp nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56: 2147–2152.

    Article  PubMed  CAS  Google Scholar 

  • Radehaus PM, Schmidt SK (1992) Characterization of a novel Pseudomonas sp. that mineralizes high-concentrations of pentachlorophenol. Appl Environ Microbiol 58: 2879–2885.

    PubMed  CAS  Google Scholar 

  • Romine MF, Fredrickson JK, Li SMW (1999a) Induction of aromatic catabolic activity in Sphingomonas aromaticivorans strain F199. J Ind Microbiol Biotechnol 23: 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999b) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181: 1585–1602.

    PubMed  CAS  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. Fems Microbiol Ecol 53: 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Shah AK, Ashtaputre AA (1999) Evaluation of rheological properties of the exopolysaccharide of Sphingomonas paucimobilis GS-1 for application in oil exploration. J Ind Microbiol Biotechnol 23: 442–445.

    Article  PubMed  CAS  Google Scholar 

  • Shintani M, Urata M, Inoue K, Eto K, Habe H, Ornori T, Yamane H, Nojiri H (2007) The Sphingomonas plasmid pCAR3 is involved in complete mineralization of carbazole. J Bacteriol 189: 2007–2020.

    Article  PubMed  CAS  Google Scholar 

  • Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54: 1483–1487.

    Article  PubMed  CAS  Google Scholar 

  • Story SP, Parker SH, Kline JD, Tzeng TRJ, Mueller JG, Kline EL (2000) Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene and fluoranthene by Sphingomonas paucimobilis var. EPA505. Gene 260: 155–169.

    Article  PubMed  CAS  Google Scholar 

  • Story SP, Kline EL, Hughes TA, Riley MB, Hayasaka SS (2004) Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505. Arch Environ Contam Toxicol 47: 168–176.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Hiraishi A (2007) Novosphingobium naphthalenivorans sp nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 53: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405–1417.

    PubMed  CAS  Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7: 909–915.

    Article  PubMed  CAS  Google Scholar 

  • van Herwijnen R, Joffe B, Ryngaert A, Hausner M, Springael D, Govers HAJ, Wuertz S, Parsons JR (2006) Effect of bioaugmentation and supplementary carbon sources on degradation of polycyclic aromatic hydrocarbons by a soil-derived culture. Fems Microbiol Ecol 55: 122–135.

    Article  PubMed  CAS  Google Scholar 

  • Vanbroekhoven K, Ryngaert A, Bastiaens L, Wattiau P, Vancanneyt M, Swings J, De Mot R, Springael D (2004) Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6: 1123–1136.

    Article  PubMed  CAS  Google Scholar 

  • Vinas M, Sabate J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71: 7008–7018.

    Article  PubMed  CAS  Google Scholar 

  • Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons JR, Renard ME, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152: 861–872.

    Article  PubMed  CAS  Google Scholar 

  • Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P (1992) Metabolism of dibenzo-para-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58: 1005–1010.

    PubMed  CAS  Google Scholar 

  • Wittich RM, Busse HJ, Kampfer P, Macedo AJ, Tiirola M, Wieser M, Abraham WR (2007a) Sphingomonas fennica sp nov and Sphingomonas haloaromaticamans sp nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 57: 1740–1746.

    Article  PubMed  CAS  Google Scholar 

  • Wittich RM, Busse HJ, Kampfer P, Tiirola M, Wieser M, Macedo AJ, Abraham WR (2007b) Sphingobium aromaticiconvertens sp nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57: 306–310.

    Article  PubMed  CAS  Google Scholar 

  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen nov and comb nov, Sphingomonas parapaucimobilis sp nov, Sphingomonas yanoikuyae sp nov, Sphingomonas adhaesiva sp nov, Sphingomonas capsulata comb nov, and 2 genospecies of the genus Sphingomonas. Microbiol Immunol 34: 99–119.

    PubMed  CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomas ursincola. Int J Syst Evol Microbiol 52: 1485–1496.

    Article  PubMed  CAS  Google Scholar 

  • Ye DY, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30: 136–142.

    Article  CAS  Google Scholar 

  • Yrjala K, Paulin L, Romantschuk M (1997) Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19: 408–414.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for support from the Heiwa Nakajima Foundation and from the Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kertesz*, M.A., Kawasaki, A. (2010). Hydrocarbon-Degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_119

Download citation

Publish with us

Policies and ethics