Skip to main content
Log in

Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen CCR, Boyd DR, Larkin MJ, Reid KA, Sharma ND, Wilson K (1997) Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038. Appl Environ Microbiol 63:151–155

    Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  4. Bae M, Sul WJ, Koh SC, Lee JH, Zylstra GJ, Kim YM, Kim EB (2003) Implication of two glutathione S-transferases in the optimal metabolism of m-toluate by Sphingomonas yanoikuyae B1. Antonie Van Leeuwenhoek 84:25–30

    Article  CAS  Google Scholar 

  5. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 17:123–133

    Google Scholar 

  6. Cerniglia CE, Morgan JC, Gibson DT (1979) Bacterial and fungal oxidation of dibenzofuran. Biochem J 180:175–185

    CAS  Google Scholar 

  7. Cho OY, Choi KY, Zylstra GJ, Kim YS, Kim SK, Lee JH, Sohn HY, Kwon GS, Kim YM, Kim E (2005) Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem Biophys Res Commun 327:656–662

    Article  CAS  Google Scholar 

  8. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram negative eubacteria. J Bacteriol 172:6568–6572

    Google Scholar 

  9. Demaneche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jouanneau Y (2004) Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:6714–6725

    Article  CAS  Google Scholar 

  10. Dutta TK, Selifonov SA, Gunsalus IC (1998) Oxidation of methyl-substituted naphthalenes: pathways in a versatile Sphingomonas paucimobilis strain. Appl Environ Microbiol 64:1884–1889

    CAS  Google Scholar 

  11. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169

    Article  CAS  Google Scholar 

  12. Euzéby JP, Tindall BJ (2004) Status of strains that contravene Rules 27(3) and 30 of the bacteriological code. request for an opinion. Int J Syst Evol Microbiol 54:293–301

    Article  Google Scholar 

  13. Gibson DT (1999) Beijerinckia sp. strain B1: a strain by any other name. J Ind Microbiol Biotechnol 23:284–293

    Article  CAS  Google Scholar 

  14. Gibson DT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia species. Biochem Biophys Res Commun 50:211–219

    Article  CAS  Google Scholar 

  15. Halden RU, Halden BG, Dwyer DF (1999) Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin from soils inoculated with Sphingomonas sp. strain RW1. Appl Environ Microbiol 65:2246–2249

    CAS  Google Scholar 

  16. Han KD, Jung YT, Son SY (2003) Phylogenetic analysis of phenanthrene-degrading Sphingomonas. J Microbiol Biotechnol 13:942–948

    CAS  Google Scholar 

  17. Harms H, Wilkes H, Wittich R, Fortnagel P (1995) Metabolism of hydroxydibenzofurans, methoxydibenzofurans, acetoxydibenzofurans, and nitrodibenzofurans by Sphingomonas sp. strain HH69. Appl Environ Microbiol 61:2499–2505

    CAS  Google Scholar 

  18. Hernaez MJ, Reineke W, Santero E (1999) Genetic analysis of biodegradation of tetralin by a Sphingomonas strain. Appl Environ Microbiol 65:1806–1810

    CAS  Google Scholar 

  19. Kasai Y, Shindo K, Harayama S, Misawa N (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69:6688–6697

    Article  CAS  Google Scholar 

  20. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic-ring-hydroxylating dioxygenase- naphthalene 1,2-dioxygenase. Struct Fold Des 6:571–586

    Article  CAS  Google Scholar 

  21. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197

    Article  CAS  Google Scholar 

  22. Kim E, Aversano PJ, Romine MF, Schneider RP, Zylstra GJ (1996) Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains. Appl Environ Microbiol 62:1467–1470

    CAS  Google Scholar 

  23. Kim E, Zylstra GJ (1999) Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23:294–302

    Article  Google Scholar 

  24. Kim E, Zylstra GJ (1995) Molecular and biochemical characterization of 2 meta-cleavage dioxygenases involved in biphenyl and m-Xylene degradation by Beijerinckia sp. strain B1. J Bacteriol 177:3095–3103

    CAS  Google Scholar 

  25. Kim EB, Zylstra GJ, Freeman JP, Heinze TM, Deck J, Cerniglia CE (1997) Evidence for the role of 2-hydroxychromene-2-carboxylate isomerase in the degradation of anthracene by Sphingomonas yanoikuyae B1. FEMS Microbiol Lett 153:479–484

    Article  CAS  Google Scholar 

  26. Klecka GM, Gibson DT (1980) Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p- dioxins by a Beijerinckia species. Appl Environ Microbiol 39:288–296

    CAS  Google Scholar 

  27. Laborde AL, Gibson DT (1977) Metabolism of dibenzothiophene by a Beijerinckia species. Appl Environ Microbiol 34:783–790

    CAS  Google Scholar 

  28. Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540

    CAS  Google Scholar 

  29. Moreno-Ruiz E, Hernaez MJ, Martinez-Perez O, Santero E (2003) Identification and functional characterization of Sphingomonas macrogolitabida strain TFA genes involved in the first two steps of the tetralin catabolic pathway. J Bacteriol 185:2026–2030

    Article  CAS  Google Scholar 

  30. O’Connor KE, Dobson AD, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287–4291

    CAS  Google Scholar 

  31. Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19

    Article  CAS  Google Scholar 

  32. Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T (2003) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357

    Article  CAS  Google Scholar 

  33. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  Google Scholar 

  34. Royo JL, Moreno-Ruiz E, Cebolla A, Santero E (2005) Stable long-term indigo production by overexpression of dioxygenase genes using a chromosomal integrated cascade expression circuit. J Biotechnol 116:113–124

    Article  CAS  Google Scholar 

  35. Schocken MJ, Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl Environ Microbiol 48:10–16

    CAS  Google Scholar 

  36. Song JM, Sung JH, Kim YM, Zylstra GJ, Kim E (2000) Roles of the meta- and the ortho-cleavage pathways for the efficient utilization of aromatic hydrocarbons by Sphingomonas yanoikuyae B1. J Microbiol 38:245–249

    CAS  Google Scholar 

  37. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Appl Microbiol 43:159–271

    CAS  Google Scholar 

  38. Stolz A (1999) Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. J Ind Microbiol Biotechnol 23:391–399

    Article  CAS  Google Scholar 

  39. Story SP, Parker SH, Hayasaka SS, Riley MB, Kline EL (2001) Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505. J Ind Microbiol Biotechnol 26:369–382

    Article  CAS  Google Scholar 

  40. Wilkes H, Wittich R, Timmis K, Fortnagel P, Francke W (1996) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl Environ Microbiol 62:367–371

    CAS  Google Scholar 

  41. Willison JC (2004) Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source. FEMS Microbiol Lett 241:143–150

    Article  CAS  Google Scholar 

  42. Ye DY, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142

    Article  CAS  Google Scholar 

  43. Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19:408–414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF through grants MCB-0078465 and CHE-0221978. E. K. acknowledges the support of the Ministry of Science and Technology, Republic of Korea, through the 21C Frontier Microbial Genomics and Applications Center Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad M. Ní Chadhain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ní Chadhain, S.M., Moritz, E.M., Kim, E. et al. Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol 34, 605–613 (2007). https://doi.org/10.1007/s10295-007-0235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0235-3

Keywords

Navigation