Radiolaria and Phaeodaria

  • Demetrio BoltovskoyEmail author
  • O. Roger Anderson
  • Nancy M. Correa
Living reference work entry

Later version available View entry history


Polycystina (~400–800 living species and several thousand extinct forms) and Phaeodaria (~400–500 living species) are exclusively marine, open-ocean planktonic protists, most of which possess elaborate siliceous skeletons. The cytoplasm is divided into an internal part (endoplasm) separated from the external, more vacuolated one (ectoplasm) by a perforated membrane – the central capsule. The Polycystina protrude long and slender cytoplasmic projections (axopodia) supported internally by a rigid central rod (axoneme); while the Phaeodria have a network of peripheral finely interconnected pseudopodia. A few Polycystina are colonial, but most, as well as all Phaeodaria, are solitary, around 40 μm to almost 2 mm in size. Most polycystine species peak in abundance between 0 and 100 m, whereas phaeodarians tend to live deeper, often below 300 m. Polycystines have a rich fossil record dating from the Cambrian and are important for stratigraphic, paleoecologic, and evolutionary studies. The world-wide biogeography and diversity of radiolarians is chiefly governed by water temperature. Radiolarian prey includes bacteria, algae, protozoa, and microinvertebrates. Many surface-dwelling species of Polycystina possess symbiotic algae and photosynthetic cyanobacteria that provide nourishment to the host. Some colonial radiolaria reproduce by binary fission of the central capsules. Sexual reproduction of polycystines or Phaeodaria has not been confirmed, but the release of motile swarmers, likely gametes, has been widely documented. In species with a radial symmetry (Spumellaria) shell-growth is centrifugal, whereas in the Nassellaria the internal cephalic elements and the cephalis appear first. Individual longevity is estimated to range between 2 and 3 weeks and 1–2 months.


Radiolaria Polycystina, Phaeodaria, radiolarians 


  1. Adl, S. M., Simpson, A. G., Lane, C. E., Lukes, J., Bass, D., Bowser, S. S.,…, Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59(5), 429–493. doi:10.1111/j.1550-7408.2012.00644.xGoogle Scholar
  2. Afanasieva, M. S. (2006). Radiolarian skeletons: Formation and morphology of skeletal shells. Paleontological Journal, 40(5), 476–489. doi:10.1134/s0031030106050029.CrossRefGoogle Scholar
  3. Afanasieva, M. S. (2007). Radiolarian skeleton: Morphology of spines, internal framework, and primary sphere. Paleontological Journal, 41(1), 1–14. doi:10.1134/s0031030107010017.CrossRefGoogle Scholar
  4. Afanasieva, M. S., Amon, E. O., Agarkov, Y. V., & Boltovskoy, D. (2005). Radiolarians in the geological record. Paleontological Journal, 39, 135–340.Google Scholar
  5. Agusti, S., Gonzalez-Gordillo, J. I., Vaque, D., Estrada, M., Cerezo, M. I., Salazar, G., …, Duarte, C. M. (2015). Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nature Communications, 6, 7608. doi:10.1038/ncomms8608.Google Scholar
  6. Aita, Y., Suzuki, N., Ogane, K., & Sakai, T. (2009). Bipolar distributions of recent and mesozoic radiolaria. Fossils, 85, 25–42.Google Scholar
  7. Alvariño, A. (1965). Chaetognaths. Oceanography and Marine Biology. Annual Review, 3, 115–194.Google Scholar
  8. Amaral Zettler, L. A., Anderson, O. R., & Caron, D. A. (1998). Insights on the diversity within a “species” of Thalassicolla (Spumellarida) based on 16S-like ribosomal RNA gene sequencing. Journal of Eukariotic Microbiology, 45(5), 488–496.CrossRefGoogle Scholar
  9. Amaral Zettler, L. A., Anderson, O. R., & Caron, D. A. (1999). Towards a molecular phylogeny of colonial spumellarian radiolaria. Marine Micropaleontology, 36, 67–79.CrossRefGoogle Scholar
  10. Anderson, O. R. (1977). Cytoplasmic fine structure of nassellarian Radiolaria. Marine Micropalaleontology, 2, 251–264.CrossRefGoogle Scholar
  11. Anderson, O. R. (1978). Light and electron microscopic observations of feeding behavior, nutrition, and reproduction in laboratory cultures of Thalassicolla nucleata Huxley. Tissue and Cell, 10(3), 401–412.PubMedCrossRefGoogle Scholar
  12. Anderson, O. R. (1980). Radiolaria. In M. Levandowsky & S. Hunter (Eds.), Biochemistry and physiology of Protozoa (pp. 1–40). New York: Academic.Google Scholar
  13. Anderson, O. R. (1983). Radiolaria. New York: Springer.CrossRefGoogle Scholar
  14. Anderson, O. R. (1992). Laboratory maintenance cultures of planktonic foraminifera and radiolaria. In J. J. Lee & A. T. Soldo (Eds.), Protocols in protozoology (pp. A-35.31–A-35.39). Lawrence: Society of Protozoologists.Google Scholar
  15. Anderson, O. R. (1996). The physiological ecology of planktonic sarcodines with applications to paleoecology: Patterns in space and time. Journal of Eukaryotic Microbiology, 43(4), 261–274.CrossRefGoogle Scholar
  16. Anderson, O. R., Bennett, P., & Bryan, M. (1989). Experimental and observational studies of radiolarian physiological ecology: 1. Growth, abundance and opal production of the spongiose radiolatian Spongaster tetras tetras. Marine Micropaleontology, 14(4), 257–265.CrossRefGoogle Scholar
  17. Anderson, O. R., Perry, C. C., & Hughes, N. P. (1990). Transmission and scanning electron microscopic evidence for cytoplasmatic deposition of strontium sulphate crystals in colonial radiolaria. Philosophical Transactions of the Royal Society of London Ser. B, 329, 81–86.CrossRefGoogle Scholar
  18. Anderson, O. R., Gastrich, M. D., & Amaral Zettler, L. A. (1999). Fine structure of the colonial radiolarian Collozoum serpentinum (Polycystinea: Spumellaria) with a reconsideration of its taxonomic status and re-establishment of the genus Collophidium (Haeckel). Marine Micropaleontology, 36(2–3), 81–89.CrossRefGoogle Scholar
  19. Anderson, O. R., Nigrini, C., Boltovskoy, D., Takahashi, K., & Swanberg, N. R. (2000). Class Polycystinea. In J. Lee (Ed.), An illustrated guide to the Protozoa (pp. 994–1022). Kansas: Society of Protozoologists.Google Scholar
  20. Bernhard, J. M. (1988). Postmortem vital staining in benthic foraminifera: Duration and importance in population and distributional studies. Journal of Foraminiferal Research, 18(2), 143–146.CrossRefGoogle Scholar
  21. Biard, T., Pillet, L., Decelle, J., Poirier, C., Suzuki, N., & Not, F. (2015). Towards an integrative morpho-molecular classification of the collodaria (Polycystinea, Radiolaria). Protist, 166(3), 374–388. doi:10.1016/j.protis.2015.05.002.PubMedCrossRefGoogle Scholar
  22. Bjørklund, K. R., & Kruglikova, S. B. (2003). Polycystine radiolarians in surface sediments in the Arctic Ocean basins and marginal seas. Marine Micropaleontology, 49(3), 231–273. doi:10.1016/s0377-8398(03)00036-7.CrossRefGoogle Scholar
  23. Boltovskoy, D. (1988). Equatorward sedimentary shadows of near-surface oceanographic patterns. Speculations in Science and Technology, 11(3), 219–232.Google Scholar
  24. Boltovskoy, D. (1994). The sedimentary record of pelagic biogeography. Progress in Oceanography, 34(2–3), 135–160.CrossRefGoogle Scholar
  25. Boltovskoy, D., & Alder, V. A. (1992). Paleoecological implications of radiolarian distribution and standing stocks vs. accumulation rates in the Weddell Sea. In J. P. Kennett & D. A. Warnke (Eds.), The Antarctic paleoenvironment: A perspective on global change (pp. 377–384). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  26. Boltovskoy, D., & Correa, N. (2014). Radiolaria (Acantharia, Polycystina y Phaeodaria). In J. Calcagno (Ed.), Los invertebrados marinos (pp. 35–47). Buenos Aires: Fundación de Historia Natural Félix de Azara.Google Scholar
  27. Boltovskoy, D., & Correa, N. (2016a). Biogeography of Radiolaria Polycystina (Protista) in the World ocean. Progress in Oceanography, 149, 82–105.CrossRefGoogle Scholar
  28. Boltovskoy, D., & Correa, N. (2016b). Planktonic equatorial diversity troughs: fact or artifact? Latitudinal diversity gradients in Radiolaria. Ecology. doi:10.1002/ecy.1623.PubMedGoogle Scholar
  29. Boltovskoy, D., & Pujana, I. (2008). Radiolaria-. In H. Camacho (Ed.), Invertebrados fósiles (pp. 111–132). Buenos Aires: Fundación de Historia Natural Félix de Azara, Universidad Maimónides.Google Scholar
  30. Boltovskoy, D., Alder, V. A., & Abelmann, A. (1993). Annual flux of Radiolaria and other shelled plankters in the eastern equatorial Atlantic at 853 m: Seasonal variations and polycystine species-specific responses. Deep-Sea Research, 40(9), 1863–1895. doi:10.1016/0967-0637(93)90036-3.CrossRefGoogle Scholar
  31. Boltovskoy, D., Kogan, M., Alder, V. A., & Mianzan, H. (2003). First record of a brackish radiolarian (Polycystina): Lophophaena rioplatensis n. sp. in the Río de la Plata estuary. Journal of Plankton Research, 25(12), 1551–1559.CrossRefGoogle Scholar
  32. Boltovskoy, D., Kling, S. A., Takahashi, K., & Bjørklund, K. (2010). World atlas of distribution of recent Polycystina (Radiolaria). Palaeontologia Electronica, 13, 1–229.Google Scholar
  33. Borgert, A. (1900). Untersuchungen über die Fortpflanzung der tripyleen Radiolarien, speziell von Aulacantha scolymantha H. Tiel I. Zoologische Jahrbüchen, 14, 203–276.Google Scholar
  34. Borgert, A. (1909). Untersuchungen über die Fortpflanzung der Tripyleen Radiolarien speziell von Aulacantha scolymantha. Teil II. Archiv für Protistenkunde, 14, 134–263.Google Scholar
  35. Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., …, Zweng, M. M. (2013). World Ocean Database 2013. Retrieved from Silver Spring.Google Scholar
  36. Bråte, J., Krabberød, A. K., Dolven, J. K., Ose, R. F., Kristensen, T., Bjørklund, K. R., & Shalchian-Tabrizi, K. (2012). Radiolaria associated with large diversity of marine alveolates. Protist, 163(5), 767–777. doi:10.1016/j.protis.2012.04.004.PubMedCrossRefGoogle Scholar
  37. Cachon, J., & Cachon, M. (1972a). Le systéme axopodial des Radiolaires Sphaeroidiés I. Centroaxoplastidiés. Archiv für Protistenkunde, 114, 51–64.Google Scholar
  38. Cachon, J., & Cachon, M. (1972b). Le systéme axopodial des Radiolaires Sphaeroidiés II. Les Periaxoplastidiés III. Les cryptoaxoplastidiés (anaxoplastidiés) IV. Les fusules et le systéme rhéoplasmique. Archiv für Protistenkunde, 114, 291–307.Google Scholar
  39. Cachon, J., & Cachon, M. (1976a). Le systéme axopodial des Collodaires (Radiolaria Polycystines). I. Les Exo-axoplastidiés. Archiv für Protistenkunde, 118, 227–234.Google Scholar
  40. Cachon, J., & Cachon, M. (1976b). Les axopodes de Radiolaires dans leur partie libre ectoplasmique. Structure et fonction. Archiv für Protistenkunde, 118, 310–320.Google Scholar
  41. Cachon, M., & Caram, B. (1979). A symbiotic green alga, Pedinomonas symbiotica, in the radiolarian Thalassolampe margarodes. Phycologia, 18(3), 177–184.CrossRefGoogle Scholar
  42. Cachon, J., Cachon, M., & Lécher, P. (1973). Nouvelle interpretation de la division nucléaire de Phaeodariés. Comptes Rendus, Academie de Sciences, 276, 3311–3314.Google Scholar
  43. Cachon, J., Cachon, M., & Estep, K. W. (1990). Phylum Actinopoda. Classes Polycystina (=Radiolaria) and Phaeodaria. In L. Margulis, J. Corliss, M. Melkonian, & D. J. Chapman (Eds.), Handbook of protoctista (pp. 334–346). Boston: Jones and Bartlett.Google Scholar
  44. Cachon-Enjumet, M. (1961). La mécanique caryocinétique chez les Phaeodariés. Bulletin de l’Institute Oceanographique, Monaco, 1214.Google Scholar
  45. Cachon-Enjumet, M. (1964). L’évolution sporogénétique des phaeodaires. Comptes Rendus de l’Academie de Sciences, 259, 2677–2678.Google Scholar
  46. Caron, D. A., & Swanberg, N. R. (1990). The ecology of planktonic sarcodines. Aquatic Sciences, 3(2/3), 147–180.Google Scholar
  47. Caron, D. A., Michaels, A. F., Swanberg, N. R., & Howse, F. A. (1995). Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda. Journal of Plankton Research, 17(1), 103–129.CrossRefGoogle Scholar
  48. Casey, R. E., Partridge, T. M., & Sloan, J. R. (1970). Radiolarian life spans, mortality rates. and seasonality gained from recent sediment and plankton samples. In A. Farinacci (Ed.), Proceedings of the second planktonic conference (pp. 159–165). Roma: Tecnoscienza.Google Scholar
  49. Casey, R. E., Spaw, J. M., & Kunze, F. R. (1982). Polycystine radiolarian distributions and enhancements related to oceanographic conditions in a hypothetical ocean. Transactions – Gulf Coast Association of Geological Societies, 32, 319–332.Google Scholar
  50. CLIMAP. (1976). The surface of the ice-age earth. Quantitative geologic evidence is used to recontruct boundary conditions for the climate 18,000 years ago. Science, 191(4232), 1131–1144.CrossRefGoogle Scholar
  51. Darling, K. F., & Wade, C. M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology, 67(3–4), 216–238. doi:10.1016/j.marmicro.2008.01.009.CrossRefGoogle Scholar
  52. Darling, K. F., Wade, C. M., Steward, I. A., Kroon, D., Dingle, R., & Brown, A. J. L. (2000). Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature, 405, 43–47.PubMedCrossRefGoogle Scholar
  53. De Vargas, C., Sáez, A. G., Medlin, L. K., & Thierstein, H. R. (2004). Super-species in the calcareous plankton. In H. R. Thierstein & J. R. Young (Eds.), Coccolithophores: from molecular proccesses to global impact (pp. 251–298). Berlin/Heidelberg: Springer.Google Scholar
  54. De Wever, P., Dumitrica, P., Caulet, J., Nigrini, C., & Caridroit, M. (2001). Radiolarians in the sedimentary record. Amsterdam: Gordon and Breach.Google Scholar
  55. Decelle, J., Romac, S., Sasaki, E., Not, F., & Mahe, F. (2014). Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (Radiolarians) assessed by high-throughput sequencing. PloS One, 9(8), e104297. doi:10.1371/journal.pone.0104297.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dumitrica, P. (1989). Internal skeletal structures of the superfamily Pyloniacea (Radiolaria), a basis of a new systematics. Revista Española de Micropaleontología, 21(2), 207–264.Google Scholar
  57. Ehrenberg, C. G. (1838). Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Königliche Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre, 1838, 59–147.Google Scholar
  58. Goll, R. M. (1968). Classification and phylogeny of Trissocyclidae (Radiolaria) in the Pacific and Caribbean Bassins. Journal of Paleontology, 42(6), 1409–1432.Google Scholar
  59. Goll, R. M. (1969). Classification and phylogeny of Trissocyclidae (Radiolaria) in the Pacific and Caribbean Bassins. Pt. II. Journal of Paleontology, 43(2), 322–339.Google Scholar
  60. Gowing, M. M. (1986). Trophic biology of phaeodarian radiolarians and flux of living radiolarians in the upper 2000 m of the North Pacific central gyre. Deep-Sea Research, 33(5), 655–674.CrossRefGoogle Scholar
  61. Haeckel, E. (1862). Die Radiolarien (Rhizopoda Radiaria). Eine monographie. Berlin: Reimer.CrossRefGoogle Scholar
  62. Haeckel, E. (1887). Report on Radiolaria collected by H.M.S. challenger during the years 1873–1876. Reports of the scientific results of the voyage of H.M.S. challenger 1873–76. Zoology (Vol. 18). London.Google Scholar
  63. Hollande, A. (1974). Données ultrastructurales sur les isospores des radiolaires. Protistologica, 10(4), 567–572.Google Scholar
  64. Hollande, A., & Carré, D. (1974). Les xanthelles des sphaerocollides, des acanthaires et de Vellela vellela: Infrastructure, cytochimie, taxonomie. Protistologica, 10(4), 573–601.Google Scholar
  65. Hollande, A., & Enjumet, M. (1953). Contribution a l’etude biologique des sphaerocollides (radiolaires collodaires et radiolaires polycyttaires) et des leurs parasites. Annales des Sciences Naturelles, Zoologie, 15(11), 99–183.Google Scholar
  66. Hollande, A., & Enjumet, M. (1960). Cytologie, évolution et systématique des Spharoidés (Radiolaires). Paris: Archives du Museum National d´Histoire Naturelle.Google Scholar
  67. Hollande, A., & Martoja, R. (1974). Identification du cristalloide des isospores de radiolaires a un cristal de célestite (SrSO4) détermination de la constitution du cristalloide para voie cytochimique et a l’aide de la microsonde électronique et du microanalyseur par émission ionique secondaire. Protistologica, 10(4), 603–609.Google Scholar
  68. Hollande, A., Cachon, J., & Cachon, M. (1971). La signification de la membrane capsulaire des Radiolaires et ses rapports avec la plasmalemme et les membranes du reticulum endoplasmique. Protistologica, 6(3), 311–318.Google Scholar
  69. Hovasse, R. (1923). Les péridiniens intracellulaires zooxanthelles et Syndinium chez les radiolaires coloniaux. Remarques sur la reproduction des radiolaires. Bulletin Societé Zoologique de France, 68, 146Google Scholar
  70. Ishitani, Y., Ujiié, Y., de Vargas, C., Not, F., & Takahashi, K. (2012a). Phylogenetic relationships and evolutionary patterns of the order Collodaria (Radiolaria). PloS One, 7(5), e35775. doi:10.1371/journal.pone.0035775.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ishitani, Y., Ujiié, Y., de Vargas, C., Not, F., & Takahashi, K. (2012b). Two distinct lineages in the radiolarian order Spumellaria having different ecological preferences. Deep Sea Research Part II: Topical Studies in Oceanography, 61–64, 172–178. doi:10.1016/j.dsr2.2011.12.005.CrossRefGoogle Scholar
  72. Ishitani, Y., Ujiié, Y., & Takishita, K. (2014). Uncovering sibling species in Radiolaria: Evidence for ecological partitioning in a marine planktonic protist. Molecular Phylogenetics and Evolution, 78, 215–222. doi:10.1016/j.ympev.2014.05.021.PubMedCrossRefGoogle Scholar
  73. Khmeleva, N. N. (1967). Rol radiolyarii pri otzenke pervichnoi produktzii v Krasnom More i Adenskom zalive [Role of radiolarians in the evaluation of the primary production in the Red Sea and Gulf of Aden]. Doklady Akademii Nauk SSSR, 172(6), 1430–1433.Google Scholar
  74. Kimoto, K., Yuasa, T., & Takahashi, O. (2011). Molecular identification of reproductive cells released from Cypassis irregularis Nigrini (Radiolaria). Environmental Microbiology Reports, 3(1), 86–90. doi:10.1111/j.1758-2229.2010.00191.x.PubMedCrossRefGoogle Scholar
  75. Kling, S. A. (1966). Castanellid and Circoporid radiolarians: Systematics and zoogeography in the eastern north Pacific. Ph.D., University of California, San Diego.Google Scholar
  76. Kling, S. A. (1976). Relation of radiolarian distribution to subsurface hydrography in the North Pacific. Deep-Sea Research, 23(11), 1043–1058.Google Scholar
  77. Kling, S. A. (1978). Radiolaria. In B. U. Haq & A. Boersma (Eds.), Introduction to marine micropaleontology (pp. 203–244). New York: Elsevier.Google Scholar
  78. Kling, S. A. (1979). Vertical distribution of polycystine radiolarians in the central North Pacific. Marine Micropaleontology, 4, 295–318. doi:10.1016/0377-8398(79)90022-7.CrossRefGoogle Scholar
  79. Kling, S. A., & Boltovskoy, D. (1995). Radiolarian vertical distribution patterns across the southern California Current. Deep-Sea Research, 42(2), 191–231.CrossRefGoogle Scholar
  80. Kling, S. A., & Boltovskoy, D. (1999). Radiolaria Phaeodaria. In D. Boltovskoy (Ed.), South Atlantic Zooplankton (pp. 213–264). Leiden: Backhuys Publishers.Google Scholar
  81. Korsun, S. A. (2011). Phaeodaria. In S. A. Karpov (Ed.), Protisty: Rukovodstvo po zoologii (Vol. 3, pp. 121–159). Saint Petersburg: Tovarischestvo Nauchnykh Izdanii KMK.Google Scholar
  82. Lazarus, D. B. (2005). A brief review of radiolarian research. Paläontologische Zeitschrift, 79(1), 183–200.CrossRefGoogle Scholar
  83. Lazarus, D. B., Kotrc, B., Wulf, G., & Schmidt, D. N. (2009). Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. Proceeding of the National Academy of Sciences, 106(23), 9333–9338. doi:10.1073/pnas.0812979106.CrossRefGoogle Scholar
  84. Lazarus, D. B., Suzuki, N., Caulet, J.-P., Nigrini, C., Goll, I., Goll, R., …, Sanfilippo, A. (2015). An evaluated list of Cenozoic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs. Zootaxa, 3999(3), 301–333. doi:10.11646/zootaxa.3999.3.1.Google Scholar
  85. López-García, P., Rodríguez-Valera, F., & Moreira, D. (2002). Toward the monophyly of Haeckel’s Radiolaria: 18S rRNA environmental data support the sisterhood of Polycystinea and Acantharea. Molecular Biology & Evolution, 19(1), 118–121.CrossRefGoogle Scholar
  86. Meyen, F. (1834). Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde. Über das Leuchten des Meeres und Beschreibung einiger Polypen und anderer niederer Tiere [On starfish and a description of some polyps and other inferior animals]. Nova Acta Academiae Caesareae Leopoldino Carolinae germanicae naturae curiosorum, 16, 125–216.Google Scholar
  87. Müller, J. (1858). Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres. Abhandlungen der Königlichen Akademie del Wissenschaften zu Berlin, 1.Google Scholar
  88. Nakamura, Y., & Suzuki, N. (2015). Phaeodaria: Diverse marine cercozoans of world-wide distribution. In S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, & F. Not (Eds.), Marine protists. Diversity and dynamics (pp. 233–249). Tokyo: Springer.Google Scholar
  89. Nakamura, Y., Imai, I., Yamaguchi, A., Tuji, A., Not, F., & Suzuki, N. (2015). Molecular phylogeny of the widely distributed marine protists, Phaeodaria (Rhizaria, Cercozoa). Protist, 166(3), 363–373. doi:10.1016/j.protis.2015.05.004.PubMedCrossRefGoogle Scholar
  90. Nazarov, B. B. (1973). Radialyarii iz nizhnikh gorizontov Kemriya Batenevskogo Kryazha [Radiolaria from the Lowest Cambrian Horizons of Batenev Ridge] Biostratigraphy and Paleontology of the Lower Cambrian of Siberia and the Far East (pp. 5–12). Novosibirsk: Nauka.Google Scholar
  91. Nigrini, C. A., & Moore, T. C. (1979). A guide to modern Radiolaria. Washington, DC: Cushman Foundation for Foraminiferal Research, Special Publication 16.Google Scholar
  92. Nimmergut, A., & Abelmann, A. (2002). Spatial and seasonal changes of radiolarian standing stocks in the Sea of Okhotsk. Deep-Sea Research, 49(3), 463–493.CrossRefGoogle Scholar
  93. Nothig, E. M., & Gowing, M. M. (1991). Late winter abundance and distribution of phaeodarian radiolarians, other large protozooplankton, and copepod nauplii in the Weddell Sea, Antarctica. Marine Biology, 111, 473–484.CrossRefGoogle Scholar
  94. Obut, O. T., & Iwata, K. (2000). Lower Cambrian Radiolaria from the Gorny Altai (Southern West Siberia). Novosti v Paleontologii i Stratigrafii, 2–3, 33–38.Google Scholar
  95. Paverd, P. J. (1995). Recent polycystine radiolaria from the Snellius-II expedition. Ph. D. Thesis, Vrije Universiteit, Amsterdam.Google Scholar
  96. Petrushevskaya, M. G. (1967). Radiolyarii otryadov Spumellaria i Nassellaria Antarkticheskoi oblasti (po materialam Sovetskoi Antarkticheskoi Ekspeditzii) [Radiolarians of the orders Spumellaria and Nassellaria from the Antarctic region (on the basis of materials collected by the Soviet Antarctic Expedition)] Issledovaniya Fauny Morei (Vol. 4(12), pp. 5–186). Leningrad: Nauka.Google Scholar
  97. Petrushevskaya, M. G. (1971a). On the natural system of polycystine Radiolaria (Class Sarcodina). In A. Farinacci (Ed.), Proceedings of the second Planktonic conference (pp. 981–992). Roma: Tecnoscienza.Google Scholar
  98. Petrushevskaya, M. G. (1971b). Radiolyarii Nassellaria v planktone Mirovogo Okeana [Radiolaria Nassellaria in the plankton of the World Ocean] (Vol. 9 (17)). Leningrad: Nauka.Google Scholar
  99. Petrushevskaya, M. G. (1981). Radiolyarii otryada Nassellaria Mirovogo Okeana [Radiolarians of the order Nassellaria of the World Ocean]. Leningrad: Nauka.Google Scholar
  100. Petrushevskaya, M. G. (1986). Radiolaryarievyi analiz [Radiolarian analysis]. Leningrad: Nauka (Akademiya Nauk SSSR).Google Scholar
  101. Petrushevskaya, M. G., Cachon, J., & Cachon, M. (1976). Sravnitelno-morfologicheskoye izuchenie radiolarii – osnovy novoi sistematiki [Comparative-morphological study of radiolarians: Foundations of new taxonomy]. Zoologicheskiĭ Zhurnal, 55(4), 485–496.Google Scholar
  102. Pierrot-Bults, A. C. (1974). Taxonomy and zoogeography of certain members of the “Sagitta serratodentata-group” (Chaetognatha). Bijdragen tot de Dierkunde, 44(2), 215–234.Google Scholar
  103. Polet, S., Berney, C., Fahrni, J., & Pawlowski, J. (2004). Small-Subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel’s Radiolaria. Protist, 155(1), 53–63. doi:10.1078/1434461000164.PubMedCrossRefGoogle Scholar
  104. Probert, I., Siano, R., Poirier, C., Decelle, J., Biard, T., Tuji, A., …, Not, F. (2014). Brandtodinium gen. nov. and B. nutriculum comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. Journal of Phycology, 50(2), 388–399. doi:10.1111/jpy.12174.Google Scholar
  105. Reid, J. L. (1965). Intermediate waters of the Pacific Ocean. John Hopkins Oceanographic Studies, 2, 1–85.Google Scholar
  106. Reshetnjak, V. V. (1955). Vertikalnoe raspredelenie radiolyarii Kurilo-Kamchatskoi vpadiny [The vertical distributions of the radiolarians of the Kurile-Kamchatka trench]. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 21, 94–101.Google Scholar
  107. Reshetnjak, V. V. (1966). Fauna SSSR. Radialyarii (Fauna of the USSR. Radiolarians] (Vol. 94). Leningrad: Nauka.Google Scholar
  108. Riedel, W. R. (1967). Subclass Radiolaria. In W. B. Harland, C. H. Holland, M. R. House, N. F. Hughes, A. B. Reynolds, M. J. S. Rudwick, G. E. Satterthwaite, I. B. H. Tarlo, & E. C. Willey (Eds.), The fossil record. A symposium with documentation (pp. 291–298). London: Geological Society of London.Google Scholar
  109. Riedel, W. R. (1971). Systematic classification of polycystine Radiolaria. In W. R. Riedel & B. M. Funnell (Eds.), The micropaleontology of oceans (pp. 649–660). Cambridge, UK: Cambridge University Press.Google Scholar
  110. Riedel, W. R., & Foreman, H. P. (1995). Catalogue of polycystine Radiolaria. National Technical Information Service, NTIS ID Number PB281000/LC.Google Scholar
  111. Riedel, W. R., & Sanfilippo, A. (1986). Morphological characters for a natural classification of Cenozoic Radiolaria, reflecting phylogenies. Marine Micropaleontology, 11(1–3), 151–170.CrossRefGoogle Scholar
  112. Sanfilippo, A., & Riedel, W. R. (1970). Post-Eocene “closed” theoperid radiolarians. Micropaleontology, 16(4), 446–462.CrossRefGoogle Scholar
  113. Sanfilippo, A., Westberg-Smith, M. J., & Riedel, W. R. (1985). Cenozoic Radiolaria. In H. M. Bolli, J. B. Saunders, & K. Perch-Nielsen (Eds.), Plankton stratigraphy (pp. 631–712). Cambridge, UK: Cambridge University Press.Google Scholar
  114. Seears, H. A., Darling, K. F., & Wade, C. M. (2012). Ecological partitioning and diversity in tropical planktonic foraminifera. BMC Evolutionary Biology, 12, 54. doi:10.1186/1471-2148-12-54.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sierra, R., Matz, M. V., Aglyamova, G., Pillet, L., Decelle, J., Not, F., …, Pawlowski, J. (2013). Deep relationships of Rhizaria revealed by phylogenomics: A farewell to Haeckel’s Radiolaria. Molecular Phylogenetics and Evolution, 67(1), 53–59. doi:10.1016/j.ympev.2012.12.011.Google Scholar
  116. Stepanjants, S. D., Kruglikova, S. B., Bjørklund, K. R., & Cortese, G. (2004). The bipolar distribution of marine organisms with emphasis on Radiolaria and Cnidaria: A step forward. In A. I. Kafanov (Ed.), Main problems in marine biogeography. In memory of the academician O.G. Kussakin (pp. 132–181). Vladivostok: Dalnauka.Google Scholar
  117. Stepanjants, S. D., Cortese, G., Kruglikova, S. B., & Bjørklund, K. R. (2006). A review of bipolarity concepts: History and examples from Radiolaria and Medusozoa (Cnidaria). Marine Biology Research, 2(3), 200–241. doi:10.1080/17451000600781767.CrossRefGoogle Scholar
  118. Suzuki, N., & Aita, Y. (2011). Radiolaria: Achievements and unresolved issues: Taxonomy and cytology. Plankton and Benthos Research, 6(2), 69–91.CrossRefGoogle Scholar
  119. Swanberg, N. R. (1979). The ecology of colonial radiolarians: Their colony morphology, trophic interactions and associations, behavior, distribution, and the protosynthesis of their symbionts. Ph.D. Thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Intitution, Woods Hole.Google Scholar
  120. Swanberg, N. R., & Caron, D. A. (1991). Patterns of sarcodine feeding in epipelagic oceanic plankton. Journal of Plankton Research, 13(2), 287–312.CrossRefGoogle Scholar
  121. Swanberg, N. R., Bennett, P., Lindsey, J. l., & Anderson, R. O. (1986). The biology of a coelodendrid: A mesopelagic phaeodarian radiolarian. Deep-Sea Research, 33(1), 15–25.CrossRefGoogle Scholar
  122. Takahashi, K., & Anderson, O. R. (2000). Class Phaeodarea. In J. Lee (Ed.), An illustrated guide to the protozoa (pp. 981–994). Kansas: Society of Protozoologists.Google Scholar
  123. Takahashi, K., & Hurd, D. C. (2007). Micro- and ultra-structures of phaeodarian Radiolaria. Memories of the Faculty of Science of Kyushu University, Series D, Earth & Panetary Science, 31(4), 137–158.Google Scholar
  124. Vishnevskaya, V. S., & Agarkov, Y. V. (1998). Late Cretaceous radiolaria of the North Caucasus as missing link to correlate tropical and boreal scales. Doklady Akademii Nauk, 360, 655–659.Google Scholar
  125. Vishnevskaya, V. S., & Kostyuchenko, A. S. (2000). The evolution of Radiolarian biodiversity. Paleontologicheskii Zhurnal, 34, 124–130.Google Scholar
  126. Yuasa, T., Takahashi, O., Dolven, J. K., Mayama, S., Matsuoka, A., Honda, D., & Bjørklund, K. R. (2006). Phylogenetic position of the small solitary phaeodarians (Radiolaria) based on 18S rDNA sequences by single cell PCR analysis. Marine Micropaleontology, 59(2), 104–114. doi:10.1016/j.marmicro.2006.01.003.CrossRefGoogle Scholar
  127. Yuasa, T., Dolven, J. K., Bjørklund, K. R., Mayama, S., & Takahashi, O. (2009). Molecular phylogenetic position of Hexacontium pachydermum Jørgensen (Radiolaria). Marine Micropaleontology, 73(1–2), 129–134. doi:10.1016/j.marmicro.2009.08.001.CrossRefGoogle Scholar
  128. Yuasa, T., Horiguchi, T., Mayama, S., Matsuoka, A., & Takahashi, O. (2012). Ultrastructural and molecular characterization of symbionts in Dictyocoryne profunda (polycystine radiolarian). Symbiosis, 57(1), 51–55.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Demetrio Boltovskoy
    • 1
    Email author
  • O. Roger Anderson
    • 2
  • Nancy M. Correa
    • 3
  1. 1.Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires-CONICETBuenos AiresArgentina
  2. 2.Earth and Environmental Sciences, Biology and Paleo Environment, Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  3. 3.Servicio de Hidrografía NavalEscuela de Ciencias del Mar (Instituto Universitario Naval)Buenos AiresArgentina

Personalised recommendations