Skip to main content

Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors

Nuclear Oncology

Abstract

While CT and MRI provide high-resolution anatomic assessment of lung and mediastinal malignancies, [18F]FDG imaging is superior in differentiating benign from malignant lymphadenopathy and in the detection of distant metastases. Pre-therapy assessment with [18F]FDG PET/CT can provide important prognostic information. In addition, [18F]FDG PET/CT can eliminate about half of futile thoracotomies and is therefore recommended for staging of lung and mediastinal tumors. [18F]FDG imaging is also indicated in the diagnosis of recurrent disease and in monitoring treatment. [18F]FDG PET/CT has been introduced for radiation planning, enabling refining treatment volumes to allow increased dose in target volume and reduced toxicity to nontarget tissues. Although [18F]FDG is the most widely used tracer in oncology, other PET tracers are evaluated with specific clinical and research goals and may have a future role in the management of lung malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FLT:

3′-deoxy-3′-18F-fluorothymidine

18F-MISO:

18F-Fluoromisonidazole

AJCC:

American Joint Committee on Cancer

BAC:

Bronchioloalveolar carcinoma

BS:

Bone scintigraphy

CM:

Coccidioidomycosis

CT:

X-ray computed tomography

CTTA:

CT texture analysis

CTV:

Clinical tumor volume

CYP1A1:

Gene encoding for a member of the cytochrome P450 superfamily of enzymes

DOTA:

2-(4-Isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane)-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

DOTATATE:

DOTA-Tyr3-octreotate

DOTATOC:

DOTA-octreotide

DWI:

Diffusion-weighted imaging

EBUS:

Endobronchial ultrasound

ECOG:

Eastern Cooperative Oncology Group

EGFR:

Epidermal growth factor receptor; the mutated form EGFRvIII plays a prominent role in tumorigenesis and proangiogenic signaling

EUS:

Endoscopic ultrasound

GGO:

Ground-glass opacity

GST mu:

Gene encoding for the mu class of glutathione S-transferase

GTV:

Gross tumor volume

HD:

Hodgkin’s disease

HIV:

Human immunodeficiency virus

HRCT:

High-resolution computed tomography

HU:

Hounsfield units

LLL:

Left lower lobe

M:

Metastasis status according to the AJCC/UICC TNM staging system

MDCT:

Multi-detector computed tomography

MinIP:

Minimum intensity projections

MIP:

Maximum intensity projection

MPM:

Malignant pleural mesothelioma

MPR:

Multiplanar reformations

MRI:

Magnetic resonance imaging

MTV:

Metabolic tumor volume

MVD:

Microvessel density

N:

Lymph node status according to the AJCC/UICC TNM staging system

NETs:

Neuroendocrine tumors

NHL:

Hodgkin’s lymphoma

NLST:

National lung screening trial

NOTA:

2-(4,7-Bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)acetic acid, a bifunctional chelating agent for metal radionuclides

NPV:

Negative predictive values

NSCLC:

Non-small cell lung cancers

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PET/MRI:

Positron emission tomography/Magnetic resonance imaging

PFS:

Progression-free survival

PPV:

Positive predictive values

PTV:

Planning target organ volume

RECIST:

Response evaluation criteria in solid tumors

RLL:

Right lower lobe

RML:

Right middle lobe

ROC:

Receiver operator curve

RUL:

Right upper lobe

SCLC:

Small-cell lung cancer

SPN:

Solitary pulmonary nodule

SRS:

Somatostatin receptor scintigraphy

STT:

Somatostatin

STTr:

Somatostatin receptor

SUV:

Standardized uptake value

SUVinc:

Increment in standardized uptake value in dual-phase acquisition

SUVmax:

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC/UICC TNM staging system

TB:

Tuberculosis

TLG:

Total lesion glycolysis

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

WHO:

World Health Organization

References

  1. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 2020;126(10):2225–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  3. Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020;41:1–24.

    Article  PubMed  Google Scholar 

  4. Noone A-M, Cronin KA, Altekruse SF, Howlader N, Lewis DR, Petkov VI, et al. Cancer incidence and survival trends by subtype using data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol Biomark Prev. 2017;26(4):632–41.

    Article  Google Scholar 

  5. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non–small-cell lung cancer. N Engl J Med. 2017;377(9):849–61.

    Article  CAS  PubMed  Google Scholar 

  6. MacRosty CR, Rivera MP. Lung cancer in women: a modern epidemic. Clin Chest Med. 2000;41:53–65.

    Article  Google Scholar 

  7. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  8. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19.

    Article  PubMed  Google Scholar 

  9. Salehi-Rad R, Li R, Paul MK, Dubinett SM, Liu B. The biology of lung cancer: development of more effective methods for prevention, diagnosis, and treatment. Clin Chest Med. 2020;41:25–38.

    Article  PubMed  Google Scholar 

  10. Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, de Andrade M, Wiest JS, et al. A major lung cancer susceptiility locus maps to chromosome 6q23–25. Am J Hum Genet. 2004;75(3):460–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz AG. Genetic predisposition to lung cancer. Chest. 2004;125(5):86S–9S.

    Article  CAS  PubMed  Google Scholar 

  12. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AI, Wistuba II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311:1998–2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chu QS. Targeting non-small cell lung cancer: driver mutation beyond epidermal growth factor mutation and anaplastic lymphoma kinase fusion. Ther Adv Med Oncol. 2020;12:1758835919895756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalemkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leighl NB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology clinical practice guideline update. J Clin Oncol. 2018;36(9):911–9.

    Article  CAS  PubMed  Google Scholar 

  15. Clinical Practice Living Guidelines – Metastatic Non-Small-Cell Lung Cancer | ESMO. Accessible at https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer

  16. Maconachie R, Mercer T, Navani N, McVeigh G, Guideline Committee. Lung cancer: diagnosis and management: summary of updated NICE guidance. BMJ. 2019;364:l1049.

    Article  PubMed  Google Scholar 

  17. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Cancer Netw. 2021;19(3):254–66. Accessible at https://jnccn.org/view/journals/jnccn/19/3/article-p254.xml.

    Article  CAS  Google Scholar 

  18. National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.

    Article  Google Scholar 

  19. van den Bergh KA, Essink-Bot ML, Bunge EM, Scholten ET, Prokop M, van Iersel CA, et al. Impact of computed tomography screening for lung cancer on participants in a randomized controlled trial (NELSON trial). Cancer. 2008;113(2):396–404.

    Article  PubMed  Google Scholar 

  20. Rami-Porta R, Bolejack V, Crowley J, Ball D, Kim J, Lyons G, et al. The IASLC lung cancer staging project: proposals for the revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2015;10(7):990–1003.

    Article  PubMed  Google Scholar 

  21. Campobasso O, Invernizzi B, Musso M, Berrino F. Survival rates of lung cancer according to histological type. Br J Cancer. 1974;29(3):240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Islam KMM, Jiang X, Anggondowati T, Lin G, Ganti AK. Comorbidity and survival in lung cancer patients. Cancer Epidemiol Biomark Prev. 2015;24(7):1079–85.

    Article  Google Scholar 

  23. Dalton SO, Steding-Jessen M, Jakobsen E, Mellemgaard A, Østerlind K, Schüz J, et al. Socioeconomic position and survival after lung cancer: influence of stage, treatment and comorbidity among Danish patients with lung cancer diagnosed in 2004–2010. Acta Oncol (Madr). 2015;54(5):797–804.

    Article  Google Scholar 

  24. Sakurai H, Asamura H, Goya T, Eguchi K, Nakanishi Y, Sawabata N, et al. Survival differences by gender for resected non-small cell lung cancer: a retrospective analysis of 12,509 cases in a Japanese lung cancer registry study. J Thorac Oncol. 2010;5(10):1594–601.

    Article  PubMed  Google Scholar 

  25. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22(4):796–802.

    Article  PubMed  Google Scholar 

  26. Ravanelli M, Farina D, Morassi M, Roca E, Cavalleri G, Tassi G, et al. Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol. 2013;23(12):3450–5.

    Article  PubMed  Google Scholar 

  27. Melosky B, Juergens R, Hirsh V, McLeod D, Leighl N, Tsao M, et al. Amplifying outcomes: checkpoint inhibitor combinations in first-line non-small cell lung cancer. Oncologist. 2020;25(1):64–77.

    Article  CAS  PubMed  Google Scholar 

  28. Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase i KEYNOTE-001 study. J Clin Oncol. 2019;37(28):2518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brueckl WM, Ficker JH, Zeitler G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer. 2020;20(1):1185.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Halpern BS, Schiepers C, Weber WA, Crawford TL, Fueger BJ, Phelps ME, et al. Presurgical staging of non-small cell lung cancer: positron emission tomography, integrated positron emission tomography/CT, and software image fusion. Chest. 2005;128(4):2289–97.

    Article  PubMed  Google Scholar 

  31. De Wever W, Ceyssens S, Mortelmans L, Stroobants S, Marchal G, Bogaert J, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol. 2007;17(1):23–32.

    Article  PubMed  Google Scholar 

  32. Pfannenberg AC, Aschoff P, Brechtel K, Müller M, Bares R, Paulsen F, et al. Low dose non-enhanced CT versus standard dose contrast-enhanced CT in combined PET/CT protocols for staging and therapy planning in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34(1):36–44.

    Article  PubMed  Google Scholar 

  33. Gupta NC, Rogers JS, Graeber GM, Gregory JL, Waheed U, Mullet D, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography imaging in patients with lung cancer and suspected malignant pleural effusion. Chest. 2002;122(6):1918–24.

    Article  CAS  PubMed  Google Scholar 

  34. Erasmus JJ, McAdams HP, Rossi SE, Goodman PC, Coleman RE, Patz EF. FDG PET of pleural effusions in patients with non-small cell lung cancer. AJR Am J Roentgenol. 2000;175(1):245–9.

    Article  CAS  PubMed  Google Scholar 

  35. Myall NJ, Das M. Advances in the treatment of stage III non–small cell lung cancer. Clin Chest Med. 2020;41:211–22.

    Article  PubMed  Google Scholar 

  36. Gray JE, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Three-year overall survival with Durvalumab after chemoradiotherapy in stage III NSCLC – update from PACIFIC. J Thorac Oncol. 2020;15(2):288–93.

    Article  CAS  PubMed  Google Scholar 

  37. Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer – major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):138–55.

    Article  PubMed  Google Scholar 

  38. Paz-Ares L, Ciuleanu T-E, Cobo M, Schenker M, Zurawski B, Menezes J, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):198–211.

    Article  CAS  PubMed  Google Scholar 

  39. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W, Carcereny Costa E, et al. Nivolumab plus Ipilimumab in advanced non–small-cell lung cancer. N Engl J Med. 2019;381(21):2020–31.

    Article  CAS  PubMed  Google Scholar 

  40. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  41. Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR -mutated advanced non–small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  42. Singh A, Chen H. Optimal care for patients with anaplastic lymphoma kinase (Alk)–positive non–small cell lung cancer: a review on the role and utility of alk inhibitors. Cancer Manag Res. 2020;12:6615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shepherd FA, Crowley J, Van Houtte P, Postmus PE, Carney D, Chansky K, et al. The International Association for the Study of Lung Cancer Lung Cancer Staging Project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol. 2007;2(12):1067–77.

    Article  PubMed  Google Scholar 

  44. Tandberg DJ, Tong BC, Ackerson BG, Kelsey CR. Surgery versus stereotactic body radiation therapy for stage I non–small cell lung cancer: a comprehensive review. Cancer. 2018;124:667–78.

    Article  PubMed  Google Scholar 

  45. Hanna NH, Schneider BJ, Temin S, Baker S, Brahmer J, Ellis PM, et al. Therapy for stage IV non–small-cell lung cancer without driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2020;38(14):1608–32.

    Article  PubMed  Google Scholar 

  46. Naidich DP, Muller NL, Krinsky MD, Glenn A. Webb WR, Vlahos I. Computed tomography and magnetic resonance of the thorax. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  47. Gould MK, Tang T, Liu I-LA, Lee J, Zheng C, Danforth KN, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14.

    Article  PubMed  Google Scholar 

  48. MacMahon H, Austin JHM, Gamsu G, Herold CJ, Jett JR, Naidich DP, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237(2):395–400.

    Article  PubMed  Google Scholar 

  49. Naidich DP, Bankier AA, MacMahon H, Schaefer-Prokop CM, Pistolesi M, Goo JM, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology. 2013;266(1):304–17.

    Article  PubMed  Google Scholar 

  50. Shaham D, Guralnik L. The solitary pulmonary nodule: radiologic considerations. Semin Ultrasound CT MRI. 2000;21(2):97–115.

    Article  CAS  Google Scholar 

  51. Truong MT, Ko JP, Rossi SE, Rossi I, Viswanathan C, Bruzzi JF, et al. Update in the evaluation of the solitary pulmonary nodule. RadioGraphics. 2014;34(6):1658–79.

    Article  PubMed  Google Scholar 

  52. Swensen SJ, Viggiano RW, Midthun DE, Müller NL, Sherrick A, Yamashita K, et al. Lung nodule enhancement at CT: multicenter study. Radiology. 2000;214(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  53. Ohno Y, Nishio M, Koyama H, Miura S, Yoshikawa T, Matsumoto S, et al. Dynamic contrast-enhanced CT and MRI for pulmonary nodule assessment. AJR Am J Roentgenol. 2014;202(3):515–29.

    Article  PubMed  Google Scholar 

  54. Chae EJ, Song J-W, Krauss B, Song K-S, Lee CW, Lee HJ, et al. Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging. 2010;25(4):301–10.

    Article  PubMed  Google Scholar 

  55. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017;284(1):228–43.

    Article  PubMed  Google Scholar 

  56. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369(10):910–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Revel M-P, Bissery A, Bienvenu M, Aycard L, Lefort C, Frija G. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology. 2004;231(2):453–8.

    Article  PubMed  Google Scholar 

  58. Revel M-P, Merlin A, Peyrard S, Triki R, Couchon S, Chatellier G, et al. Software volumetric evaluation of doubling times for differentiating benign versus malignant pulmonary nodules. AJR Am J Roentgenol. 2006;187(1):135–42.

    Article  PubMed  Google Scholar 

  59. Wormanns D, Kohl G, Klotz E, Marheine A, Beyer F, Heindel W, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol. 2004;14(1):86–92.

    Article  PubMed  Google Scholar 

  60. Hasegawa M, Sone S, Takashima S, Li F, Yang ZG, Maruyama Y, et al. Growth rate of small lung cancers detected on mass CT screening. Br J Radiol. 2000;73(876):1252–9.

    Article  CAS  PubMed  Google Scholar 

  61. de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M. Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology. 2010;255(1):199–206.

    Article  PubMed  Google Scholar 

  62. Pyenson BS, Tomicki SM. Lung cancer screening: a cost-effective public health imperative. Am J Public Health. 2018;108(10):1292–3.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moyer VA. Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(5):330–8.

    Article  PubMed  Google Scholar 

  64. Donnelly EF, Kazerooni EA, Lee E, Henry TS, Boiselle PM, Crabtree TD, et al. ACR Appropriateness Criteria ® lung cancer screening. J Am Coll Radiol. 2018;15(11):S341–6.

    Article  PubMed  Google Scholar 

  65. Gould MK. Clinical Practice. Lung-cancer screening with low-dose computed tomography. N Engl J Med. 2014;371(19):1813–20.

    Article  CAS  PubMed  Google Scholar 

  66. De Wever W, Verschakelen J, Coolen J. Role of imaging in diagnosis, staging and follow-up of lung cancer. Curr Opin Pulm Med. 2014;20(4):385–92.

    Article  PubMed  CAS  Google Scholar 

  67. de Groot PM, Chung JH, Ackman JB, Berry MF, Carter BW, Colletti PM, et al. ACR Appropriateness Criteria® noninvasive clinical staging of primary lung cancer. J Am Coll Radiol. 2019;16(5):S184–95.

    Article  PubMed  Google Scholar 

  68. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC Cancer Staging Manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.

    Article  PubMed  Google Scholar 

  69. Yang R-M, Li L, Wei XH, Guo YM, Huang YH, Lai LS, et al. Differentiation of central lung cancer from atelectasis: comparison of diffusion-weighted MRI with PET/CT. PLoS One. 2013;8(4):e60279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pennes DR, Glazer GM, Wimbish KJ, Gross BH, Long RW, Orringer MB. Chest wall invasion by lung cancer: limitations of CT evaluation. AJR Am J Roentgenol. 1985;144(3):507–11.

    Article  CAS  PubMed  Google Scholar 

  71. Glazer HS, Duncan-Meyer J, Aronberg DJ, Moran JF, Levitt RG, Sagel SS. Pleural and chest wall invasion in bronchogenic carcinoma: CT evaluation. Radiology. 1985;157(1):191–4.

    Article  CAS  PubMed  Google Scholar 

  72. Padovani B, Mouroux J, Seksik L, Chanalet S, Sedat J, Rotomondo C, et al. Chest wall invasion by bronchogenic carcinoma: evaluation with MR imaging. Radiology. 1993;187(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  73. Akata S, Kajiwara N, Park J, Yoshimura M, Kakizaki D, Abe K, et al. Evaluation of chest wall invasion by lung cancer using respiratory dynamic MRI. J Med Imaging Radiat Oncol. 2008;52(1):36–9.

    Article  CAS  PubMed  Google Scholar 

  74. Kajiwara N, Akata S, Uchida O, Usuda J, Ohira T, Kawate N, et al. Cine MRI enables better therapeutic planning than CT in cases of possible lung cancer chest wall invasion. Lung Cancer. 2010;69(2):203–8.

    Article  PubMed  Google Scholar 

  75. McLoud TC, Swenson SJ. Lung carcinoma. Clin Chest Med. 1999;20(4):697–713.

    Article  CAS  PubMed  Google Scholar 

  76. White CS. MR evaluation of the pericardium and cardiac malignancies. Magn Reson Imaging Clin N Am. 1996;4(2):237–51.

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi K, Furuse M, Hanaoka H, Yamada T, Mineta M, Ono H, et al. Pulmonary vein and left atrial invasion by lung cancer: assessment by breath-hold Gadolinium-enhanced three-dimensional MR angiography. J Comput Assist Tomogr. 2000;24(4):557–61.

    Article  CAS  PubMed  Google Scholar 

  78. Ohno Y, Adachi S, Motoyama A, Kusumoto M, Hatabu H, Sugimura K, et al. Multiphase ECG-triggered 3D contrast-enhanced MR angiography: utility for evaluation of hilar and mediastinal invasion of bronchogenic carcinoma. J Magn Reson Imaging. 2001;13(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  79. Toloza EM, Harpole L, Detterbeck F, McCrory DC. Invasive staging of non-small cell lung cancer*. Chest. 2003;123(1):157S–66S.

    Article  PubMed  Google Scholar 

  80. Sieren JC, Ohno Y, Koyama H, Sugimura K, McLennan G. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. J Magn Reson Imaging. 2010;32(6):1353–69.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Henzler T, Goldstraw P, Wenz F, Pirker R, Weder W, Apfaltrer P, et al. Perspectives of novel imaging techniques for staging, therapy response assessment, and monitoring of surveillance in lung cancer: summary of the Dresden 2013 Post WCLC-IASLC State-of-the-Art Imaging Workshop. J Thorac Oncol. 2015;10(2):237–49.

    Article  CAS  PubMed  Google Scholar 

  82. Cerfolio RJ, Bryant AS. Distribution and likelihood of lymph node metastasis based on the lobar location of nonsmall-cell lung cancer. Ann Thorac Surg. 2006;81(6):1969–73.

    Article  PubMed  Google Scholar 

  83. Watanabe S, Suzuki K, Asamura H. Superior and basal segment lung cancers in the lower lobe have different lymph node metastatic pathways and prognosis. Ann Thorac Surg. 2008;85(3):1026–31.

    Article  PubMed  Google Scholar 

  84. Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer. Chest. 2013;143(5):e211S–50S.

    Article  PubMed  Google Scholar 

  85. Silvestri GA, Littenberg B, Colice GL. The clinical evaluation for detecting metastatic lung cancer. A meta-analysis. Am J Respir Crit Care Med. 1995;152(1):225–30.

    Article  CAS  PubMed  Google Scholar 

  86. Wong J, Haramati LB, Rozenshtein A, Yanez M, Austin JHM. Non-small-cell lung cancer: practice patterns of extrathoracic imaging. Acad Radiol. 1999;6(4):211–5.

    Article  CAS  PubMed  Google Scholar 

  87. De Wever W, Vankan Y, Stroobants S, Verschakelen J. Detection of extrapulmonary lesions with integrated PET/CT in the staging of lung cancer. Eur Respir J. 2007;29(5):995–1002.

    Article  PubMed  Google Scholar 

  88. Mayo-Smith WW, Boland GW, Noto RB, Lee MJ. State-of-the-art adrenal imaging. RadioGraphics. 2001;21(4):995–1012.

    Article  CAS  PubMed  Google Scholar 

  89. Ohno Y, Koyama H, Nogami M, Takenaka D, Yoshikawa T, Yoshimura M, et al. Whole-body MR imaging vs. FDG-PET: comparison of accuracy of M-stage diagnosis for lung cancer patients. J Magn Reson Imaging. 2007;26(3):498–509.

    Article  PubMed  Google Scholar 

  90. Ohno Y, Koyama H, Onishi Y, Takenaka D, Nogami M, Yoshikawa T, et al. Non–small cell lung cancer: whole-body MR examination for M-stage assessment – utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology. 2008;248(2):643–54.

    Article  PubMed  Google Scholar 

  91. Jett JR, Schild SE, Kesler KA, Kalemkerian GP. Treatment of small cell lung cancer. Chest. 2013;143(5):e400S–19S.

    Article  CAS  PubMed  Google Scholar 

  92. Kalemkerian GP, Gadgeel SM. Modern staging of small cell lung cancer. J Natl Compr Cancer Netw. 2013;11(1):99–104.

    Article  Google Scholar 

  93. Quan AL, Videtic GMM, Suh JH. Brain metastases in small cell lung cancer. Oncology (Williston Park). 2004;18(8):961–72.

    Google Scholar 

  94. Liam CK, Liam YS, Poh ME, Wong CK. Accuracy of lung cancer staging in the multidisciplinary team setting. Transl Lung Cancer Res. 2020;9(4):1654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nishino M, Hatabu H, Johnson BE, McLoud TC. State of the art: response assessment in lung cancer in the era of genomic medicine. Radiology. 2014;271(1):6–27.

    Article  PubMed  Google Scholar 

  96. Nishino M, Hatabu H, Hodi FS. Imaging of cancer immunotherapy: current approaches and future directions. Radiology. 2019;290(1):9–22.

    Article  PubMed  Google Scholar 

  97. Bourgouin PM, McLoud TC, Fitzgibbon JF, Mark EJ, Shepard J-AO, Moore EM, et al. Differentiation of bronchogenic carcinoma from postobstructive pneumonitis by magnetic resonance imaging. J Thorac Imaging. 1991;6(2):22–7.

    Article  CAS  PubMed  Google Scholar 

  98. Ohno Y, Adachi S, Kono M, Kusumoto M, Motoyama A, Sugimura K. Predicting the prognosis of non-small cell lung cancer patient treated with conservative therapy using contrast-enhanced MR imaging. Eur Radiol. 2000;10(11):1770–81.

    Article  CAS  PubMed  Google Scholar 

  99. Lou F, Sima CS, Rusch VW, Jones DR, Huang J. Differences in patterns of recurrence in early-stage versus locally advanced non-small cell lung cancer. Ann Thorac Surg. 2014;98(5):1755–61.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Johnson BE. Second lung cancers in patients after treatment for an initial lung cancer. JNCI J Natl Cancer Inst. 1998;90(18):1335–45.

    Article  CAS  PubMed  Google Scholar 

  101. Schneider BJ, Ismaila N, Aerts J, Chiles C, Daly ME, Detterbeck FC, et al. Lung cancer surveillance after definitive curative-intent therapy: ASCO guideline. J Clin Oncol. 2019;38(7):753–66.

    Article  PubMed  Google Scholar 

  102. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127–57.

    PubMed  PubMed Central  Google Scholar 

  103. Maldonado F, Duan F, Raghunath SM, Rajagopalan S, Karwoski RA, Garg K, et al. Noninvasive computed tomography–based risk stratification of lung adenocarcinomas in the National Lung Screening Trial. Am J Respir Crit Care Med. 2015;192(6):737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wychulis AR, Payne WS, Clagett OT, Woolner LB. Surgical treatment of mediastinal tumors: a 40 year experience. J Thorac Cardiovasc Surg. 1971;62(3):379–92.

    Article  CAS  PubMed  Google Scholar 

  105. Ringl H. Imaging of diseases of the chest. In: Armstrong P, Wilson AG, Dee P, Hansell DM, editors. 3rd ed. St Louis: Mosby; 2000. p. 1039. price US$ 229. ISBN: 0-7234-3166-3. Eur J Radiol. 2001;40(2):154.

    Google Scholar 

  106. Kohman LJ. Approach to the diagnosis and staging of mediastinal masses. Chest. 1993;103(4):328S–30S.

    Article  CAS  PubMed  Google Scholar 

  107. Tecce PM, Fishman EK, Kuhlman JE. CT evaluation of the anterior mediastinum: spectrum of disease. RadioGraphics. 1994;14(5):973–90.

    Article  CAS  PubMed  Google Scholar 

  108. Brown LR, Aughenbaugh GL. Masses of the anterior mediastinum: CT and MR imaging. AJR Am J Roentgenol. 1991;157(6):1171–80.

    Article  CAS  PubMed  Google Scholar 

  109. Giron J, Fajadet P, Sans N, Jarlaud T, Verhnet H, Galy-Fourcade D, et al. Diagnostic approach to mediastinal masses. Eur J Radiol. 1998;27(1):21–42.

    Article  CAS  PubMed  Google Scholar 

  110. Ho VB, Prince MR. Thoracic MR aortography: imaging techniques and strategies. RadioGraphics. 1998;18(2):287–309.

    Article  CAS  PubMed  Google Scholar 

  111. Shaham D, Skilakaki MG, Goitein O. Imaging of the mediastinum: applications for thoracic surgery. Thorac Surg Clin. 2004;14(1):25–42.

    Article  PubMed  Google Scholar 

  112. Tomiyama N, Honda O, Tsubamoto M, Inoue A, Sumikawa H, Kuriyama K, et al. Anterior mediastinal tumors: diagnostic accuracy of CT and MRI. Eur J Radiol. 2009;69(2):280–8.

    Article  PubMed  Google Scholar 

  113. Landwehr P, Schulte O, Lackner K. MR imaging of the chest: mediastinum and chest wall. Eur Radiol. 1999;9(9):1737–44.

    Article  CAS  PubMed  Google Scholar 

  114. Whitten CR, Khan S, Munneke GJ, Grubnic S. A diagnostic approach to mediastinal abnormalities. RadioGraphics. 2007;27(3):657–71.

    Article  PubMed  Google Scholar 

  115. Sadohara J, Fujimoto K, Müller NL, Kato S, Takamori S, Ohkuma K, et al. Thymic epithelial tumors: comparison of CT and MR imaging findings of low-risk thymomas, high-risk thymomas, and thymic carcinomas. Eur J Radiol. 2006;60(1):70–9.

    Article  PubMed  Google Scholar 

  116. Razek AA, Elmorsy A, Elshafey M, Elhadedy T, Hamza O. Assessment of mediastinal tumors with diffusion-weighted single-shot echo-planar MRI. J Magn Reson Imaging. 2009;30(3):535–40.

    Article  PubMed  Google Scholar 

  117. Bacha EA, Chapelier AR, Macchiarini P, Fadel E, Dartevelle PG. Surgery for invasive primary mediastinal tumors. Ann Thorac Surg. 1998;66(1):234–9.

    Article  CAS  PubMed  Google Scholar 

  118. Roviaro G, Rebuffat C, Varoli F, Vergani C, Maciocco M, Scalambra SM. Videothoracoscopic excision of mediastinal masses: indications and technique. Ann Thorac Surg. 1994;58(6):1679–83.

    Article  CAS  PubMed  Google Scholar 

  119. Kantoff P. Surgical and medical management of germ cell tumors of the chest. Chest. 1993;103(4):331S–3S.

    Article  CAS  PubMed  Google Scholar 

  120. Gawrychowski J, Rokicki M, Gabriel A, Lackowska B, Czyzewski D. Thymoma – the usefulness of some prognostic factors for diagnosis and surgical treatment. Eur J Surg Oncol. 2000;26(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  121. Wright CD, Mathisen DJ. Mediastinal tumors: diagnosis and treatment. World J Surg. 2001;25(2):204–9.

    Article  CAS  PubMed  Google Scholar 

  122. Strollo DC, de Christenson MLR, Jett JR. Primary mediastinal tumors. Part 1*. Chest. 1997;112(2):511–22.

    Article  CAS  PubMed  Google Scholar 

  123. Strollo DC, Rosado-de-Christenson ML. Tumors of the thymus. J Thorac Imaging. 1999;14(3):152–71.

    Article  CAS  PubMed  Google Scholar 

  124. Verstandig AG, Epstein DM, Miller WT, Aronchik JA, Gefter WB, Miller WT. Thymoma–report of 71 cases and a review. Crit Rev Diagn Imaging. 1992;33(3):201–30.

    CAS  PubMed  Google Scholar 

  125. Rosado-de-Christenson ML, Strollo DC, Marom EM. Imaging of thymic epithelial neoplasms. Hematol Oncol Clin North Am. 2008;22(3):409–31.

    Article  PubMed  Google Scholar 

  126. Koga K, Matsuno Y, Noguchi M, Mukai K, Asamura H, Goya T, et al. A review of 79 thymomas: modification of staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol Int. 2008;44(5):359–67.

    Article  Google Scholar 

  127. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart. J Thorac Oncol. 2015;10(9):1240–2.

    Article  PubMed  Google Scholar 

  128. Huang TW, Cheng YL, Tzao C, Chang H, Tsai WC, Lee SC. Middle mediastinal thymoma. Respirology. 2007;12(6):934–6.

    Article  PubMed  Google Scholar 

  129. Minniti S, Valentini M, Pinali L, Malag R, Lestani M, Procacci C. Thymic masses of the middle mediastinum. J Thorac Imaging. 2004;19(3):192–5.

    Article  PubMed  Google Scholar 

  130. Jeong YJ, Lee KS, Kim J, Shim YM, Han J, Kwon OJ. Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? AJR Am J Roentgenol. 2004;183(2):283–9.

    Article  PubMed  Google Scholar 

  131. Tomiyama N, Müller NL, Ellis SJ, Cleverley JR, Okumura M, Miyoshi S, et al. Invasive and noninvasive thymoma: distinctive CT features. J Comput Assist Tomogr. 2001;25(3):388–93.

    Article  CAS  PubMed  Google Scholar 

  132. Rosado-de-Christenson ML, Galobardes J, Moran CA. Thymoma: radiologic-pathologic correlation. RadioGraphics. 1992;12(1):151–68.

    Article  CAS  PubMed  Google Scholar 

  133. Santana L, Givica A, Camacho C. Best cases from the AFIP. RadioGraphics. 2002;22(Suppl_1):S95–102.

    Article  PubMed  Google Scholar 

  134. Zerhouni EA, Scott WW, Baker RR, Wharam MD, Siegelman SS. Invasive thymomas: diagnosis and evaluation by computed tomography. J Comput Assist Tomogr. 1982;6(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  135. Maher MM, Shepard J-AO. Imaging of thymoma. Semin Thorac Cardiovasc Surg. 2005;17(1):12–9.

    Article  PubMed  Google Scholar 

  136. Sakai F, Sone S, Kiyono K, Kawai T, Maruyama A, Ueda H, et al. MR imaging of thymoma: radiologic-pathologic correlation. AJR Am J Roentgenol. 1992;158(4):751–6.

    Article  CAS  PubMed  Google Scholar 

  137. Sakai S, Murayama S, Soeda H, Matsuo Y, Ono M, Masuda K. Differential diagnosis between thymoma and non-thymoma by dynamic MR imaging. Acta Radiol. 2002;43(3):262–8.

    Article  CAS  PubMed  Google Scholar 

  138. Inaoka T, Takahashi K, Mineta M, Yamada T, Shuke N, Okizaki A, et al. Thymic hyperplasia and thymus gland tumors: differentiation with chemical shift MR imaging. Radiology. 2007;243(3):869–76.

    Article  PubMed  Google Scholar 

  139. Nohl-Oser HC. An investigation of the anatomy of the lymphatic drainage of the lungs as shown by the lymphatic spread of bronchial carcinoma. Ann R Coll Surg Engl. 1972;51(3):157–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Libshitz HI, McKenna RJ, Mountain CF. Patterns of mediastinal metastases in bronchogenic carcinoma. Chest. 1986;90(2):229–32.

    Article  CAS  PubMed  Google Scholar 

  141. Lee JKT, Sagel SS, Stanley RJ, Heiken JP, editors. Computed body tomography with MRI correlation. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1998.

    Google Scholar 

  142. Castellino RA, Blank N, Hoppe RT, Cho C. Hodgkin disease: contributions of chest CT in the initial staging evaluation. Radiology. 1986;160(3):603–5.

    Article  CAS  PubMed  Google Scholar 

  143. Filly R, Blank N, Castellino RA. Radiographic distribution of intrathoracic disease in previously untreated patients with Hodgkin’s disease and Non-Hodgkin’s lymphoma. Radiology. 1976;120(2):277–81.

    Article  CAS  PubMed  Google Scholar 

  144. Castellino RA. Hodgkin disease: practical concepts for the diagnostic radiologist. Radiology. 1986;159(2):305–10.

    Article  CAS  PubMed  Google Scholar 

  145. Kaplan HS. Hodgkin’s disease: Unfolding concepts concerning its nature, management and prognosis. Cancer. 1980;45(10):2439–74.

    Article  CAS  PubMed  Google Scholar 

  146. Heron CW, Husband JE, Williams MP. Hodgkin disease: CT of the thymus. Radiology. 1988;167(3):647–51.

    Article  CAS  PubMed  Google Scholar 

  147. Castellino RA. The non-Hodgkin lymphomas: practical concepts for the diagnostic radiologist. Radiology. 1991;178(2):315–21.

    Article  CAS  PubMed  Google Scholar 

  148. Castellino RA, Hilton S, O’Brien JP, Portlock CS. Non-Hodgkin lymphoma: contribution of chest CT in the initial staging evaluation. Radiology. 1996;199(1):129–32.

    Article  CAS  PubMed  Google Scholar 

  149. Kruse M, Sherry SJ, Paidpally V, Mercier G, Subramaniam RM. FDG PET/CT in the management of primary pleural tumors and pleural metastases. AJR Am J Roentgenol. 2013;201(2):W215–26.

    Article  PubMed  Google Scholar 

  150. Schaffler GJ, Wolf G, Schoellnast H, Groell R, Maier A, Smolle-Jüttner FM, et al. Non–small cell lung cancer: evaluation of pleural abnormalities on CT scans with 18F-FDG PET. Radiology. 2004;231(3):858–65.

    Article  PubMed  Google Scholar 

  151. Hierholzer J, Luo L, Bittner RC, Stroszczynski C, Schroder R-J, Schoenfeld N, et al. MRI and CT in the differential diagnosis of pleural disease. Chest. 2000;118(3):604–9.

    Article  CAS  PubMed  Google Scholar 

  152. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007;357(21):2153–65.

    Article  CAS  PubMed  Google Scholar 

  153. Ganeshan D, Menias CO, Lubner MG, Pickhardt PJ, Sandrasegaran K, Bhalla S. Sarcoidosis from head to toe: what the radiologist needs to know. RadioGraphics. 2018;38(4):1180–200.

    Article  PubMed  Google Scholar 

  154. Clarke D, Mitchell AW, Dick R, James GD. The radiology of sarcoidosis. Sarcoidosis. 1994;11(2):90–9.

    CAS  PubMed  Google Scholar 

  155. Conces DJ. Histoplasmosis. Semin Roentgenol. 1996;31(1):14–27.

    Article  PubMed  Google Scholar 

  156. McGuinness G, Naidich DP, Jagirdar J, Leitman B, McCauley DI. High resolution CT findings in miliary lung disease. J Comput Assist Tomogr. 1992;16(3):384–90.

    Article  CAS  PubMed  Google Scholar 

  157. Sherrick AD, Brown LR, Harms GF, Myers JL. The Radiographic findings of fibrosing mediastinitis. Chest. 1994;106(2):484–9.

    Article  CAS  PubMed  Google Scholar 

  158. Jude CM, Nayak NB, Patel MK, Deshmukh M, Batra P. Pulmonary coccidioidomycosis: pictorial review of chest radiographic and CT findings. RadioGraphics. 2014;34(4):912–25.

    Article  PubMed  Google Scholar 

  159. Kim KI, Leung AN, Flint JD, Müller NL. Chronic pulmonary coccidioidomycosis: computed tomographic and pathologic findings in 18 patients. Can Assoc Radiol J. 1998;49(6):401–7.

    CAS  PubMed  Google Scholar 

  160. Harisinghani MG, McLoud TC, Shepard J-AO, Ko JP, Shroff MM, Mueller PR. Tuberculosis from head to toe. RadioGraphics. 2000;20(2):449–70.

    Article  CAS  PubMed  Google Scholar 

  161. Burrill J, Williams CJ, Bain G, Conder G, Hine AL, Misra RR. Tuberculosis: a radiologic review. RadioGraphics. 2007;27(5):1255–73.

    Article  PubMed  Google Scholar 

  162. Lee KS, Song KS, Lim TH, Kim PN, Kim IY, Lee BH. Adult-onset pulmonary tuberculosis: findings on chest radiographs and CT scans. AJR Am J Roentgenol. 1993;160(4):753–8.

    Article  CAS  PubMed  Google Scholar 

  163. Eisenhuber E, Mostbeck G, Bankier A, Stadler A, Rumetshofer R. Radiologische diagnostik der lungentuberkulose. Radiologe. 2007;47(5):393–400.

    Article  CAS  PubMed  Google Scholar 

  164. Lee KM, Choe KH, Kim SJ. Clinical investigation of cavitary tuberculosis and tuberculous pneumonia. Korean J Intern Med. 2006;21(4):230.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Linh NN, Marks GB, Crawford ABH. Radiographic predictors of subsequent reactivation of tuberculosis. Int J Tuberc Lung Dis. 2007;11(10):1136–42.

    CAS  PubMed  Google Scholar 

  166. Greenspan BS. Role of PET/CT for precision medicine in lung cancer: perspective of the Society of Nuclear Medicine and Molecular Imaging. Transl Lung Cancer Res. 2017;6(6):617–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu S, Cheng H, Yao S, Wang C, Han G, Li X, et al. The clinical application value of PET/CT in adenocarcinoma with bronchioloalveolar carcinoma features. Ann Nucl Med. 2010;24(7):541–7.

    Article  PubMed  Google Scholar 

  168. Iwano S, Ito S, Tsuchiya K, Kato K, Naganawa S. What causes false-negative PET findings for solid-type lung cancer? Lung Cancer. 2013;79(2):132–6.

    Article  PubMed  Google Scholar 

  169. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer. 2004;45(1):19–27.

    Article  PubMed  Google Scholar 

  170. Søgaard R, Fischer BMB, Mortensen J, Højgaard L, Lassen U. Preoperative staging of lung cancer with PET/CT: cost-effectiveness evaluation alongside a randomized controlled trial. Eur J Nucl Med Mol Imaging. 2011;38(5):802–9.

    Article  PubMed  Google Scholar 

  171. Takeuchi S, Khiewvan B, Fox PS, Swisher SG, Rohren EM, Bassett RL, et al. Impact of initial PET/CT staging in terms of clinical stage, management plan, and prognosis in 592 patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2014;41(5):906–14.

    Article  PubMed  Google Scholar 

  172. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions. JAMA. 2001;285(7):914.

    Article  CAS  PubMed  Google Scholar 

  173. Hellwig D, Ukena D, Paulsen F, Bamberg M, Kirsch C-M. Metaanalyse zum stellenwert der positronen-emissions-tomographie mit F-18 fluorodesoxyglukose (FDG-PET) bei lungentumoren1 – diskussionsbasis der Deutschen Konsensus-Konferenz Onko-PET 2000. Pneumologie. 2001;55(8):367–77.

    Article  CAS  PubMed  Google Scholar 

  174. Li ZZ, Huang YL, Song HJ, Wang YJ, Huang Y. The value of 18F-FDG-PET/CT in the diagnosis of solitary pulmonary nodules. Medicine (Baltimore). 2018;97(12):e0130.

    Article  Google Scholar 

  175. Divisi D, Barone M, Bertolaccini L, Zaccagna G, Gabriele F, Crisci R. Diagnostic performance of fluorine-18 fluorodeoxyglucose positron emission tomography in the management of solitary pulmonary nodule: a meta-analysis. J Thorac Dis. 2018;10(S7):S779–89.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Basso Dias A, Zanon M, Altmayer S, Sartori Pacini G, Henz Concatto N, Watte G, et al. Fluorine 18–FDG PET/CT and diffusion-weighted MRI for malignant versus benign pulmonary lesions: a meta-analysis. Radiology. 2019;290(2):525–34.

    Article  PubMed  Google Scholar 

  177. Deppen SA, Blume JD, Kensinger CD, Morgan AM, Aldrich MC, Massion PP, et al. Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease. JAMA. 2014;312(12):1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bastarrika G, García-Velloso MJ, Lozano MD, Montes U, Torre W, Spiteri N, et al. Early lung cancer detection using spiral computed tomography and positron emission tomography. Am J Respir Crit Care Med. 2005;171(12):1378–83.

    Article  PubMed  Google Scholar 

  179. Hagaman G, MSN, FNP-C M. NCCN imaging appropriate use criteria compendium: an overview. J Adv Pract Oncol. 2017;8(2):203.

    PubMed  PubMed Central  Google Scholar 

  180. Demura Y, Tsuchida T, Uesaka D, Umeda Y, Morikawa M, Ameshima S, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography for diagnosing disease activity and monitoring therapeutic response in patients with pulmonary mycobacteriosis. Eur J Nucl Med Mol Imaging. 2009;36(4):632–9.

    Article  PubMed  Google Scholar 

  181. Hofmeyr A, Eddie Lau WF, Slavin MA. Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis. 2007;87(5):459–63.

    Article  PubMed  Google Scholar 

  182. Lee JW, Kim BS, Lee DS, Chung J-K, Lee MC, Kim S, et al. 18F-FDG PET/CT in mediastinal lymph node staging of non-small-cell lung cancer in a tuberculosis-endemic country: consideration of lymph node calcification and distribution pattern to improve specificity. Eur J Nucl Med Mol Imaging. 2009;36(11):1794–802.

    Google Scholar 

  183. Croft DR, Trapp J, Kernstine K, Kirchner P, Mullan B, Galvin J, et al. FDG-PET imaging and the diagnosis of non-small cell lung cancer in a region of high histoplasmosis prevalence. Lung Cancer. 2002;36(3):297–301.

    Article  PubMed  Google Scholar 

  184. Keijsers RG, Grutters JC, van Velzen-Blad H, van den Bosch JM, Oyen WJ, Verzijlbergen FJ. 18F-FDG PET patterns and BAL cell profiles in pulmonary sarcoidosis. Eur J Nucl Med Mol Imaging. 2010;37(6):1181–8.

    Google Scholar 

  185. Aide N, Allouache D, Ollivier Y, de Raucourt S, Switsers O, Bardet S. Early 2′-deoxy-2′-[18F]fluoro-d-glucose PET metabolic response after corticosteroid therapy to differentiate cancer from sarcoidosis and sarcoid-like lesions. Mol Imaging Biol. 2009;11(4):224–8.

    Article  PubMed  Google Scholar 

  186. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43(7):871–5.

    PubMed  Google Scholar 

  187. Zhao M, Ma Y, Yang B, Wang Y. A meta-analysis to evaluate the diagnostic value of dual-time-point F-fluorodeoxyglucose positron emission tomography/computed tomography for diagnosis of pulmonary nodules. J Cancer Res Ther. 2016;12(8):304.

    Article  CAS  Google Scholar 

  188. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non–small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348(25):2500–7.

    Article  PubMed  Google Scholar 

  189. Cerfolio RJ, Ojha B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA. The accuracy of integrated PET-CT compared with dedicated pet alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg. 2004;78(3):1017–23.

    Article  PubMed  Google Scholar 

  190. De Wever W, Stroobants S, Coolen J, Verschakelen JA. Integrated PET/CT in the staging of nonsmall cell lung cancer: technical aspects and clinical integration. Eur Respir J. 2009;33(1):201–12.

    Article  PubMed  Google Scholar 

  191. Flechsig P, Mehndiratta A, Haberkorn U, Kratochwil C, Giesel FL. PET/MRI and PET/CT in lung lesions and thoracic malignancies. Semin Nucl Med. 2015;45(4):268–81.

    Article  PubMed  Google Scholar 

  192. Lavrenkov K, Partridge M, Cook G, Brada M. Positron emission tomography for target volume definition in the treatment of non-small cell lung cancer. Radiother Oncol. 2005;77(1):1–4.

    Article  PubMed  Google Scholar 

  193. Yang M-F, Tong Z-H, Wang Z, Zhang Y-Y, Xu L-L, Wang X-J, et al. Development and validation of the PET-CT score for diagnosis of malignant pleural effusion. Eur J Nucl Med Mol Imaging. 2019;46(7):1457–67.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Walker CM, Chung JH, Abbott GF, Little BP, El-Sherief AH, Shepard J-AO, et al. Mediastinal lymph node staging: from noninvasive to surgical. AJR Am J Roentgenol. 2012;199(1):W54–64.

    Article  PubMed  Google Scholar 

  195. Shields TW. The significance of ipsilateral mediastinal lymph node metastasis (N2 disease) in non-small cell carcinoma of the lung. A commentary. J Thorac Cardiovasc Surg. 1990;99(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  196. Berlangieri S. F-18 fluorodeoxyglucose positron emission tomography in the non-invasive staging of non-small cell lung cancer*1. Eur J Cardio-Thoracic Surg. 1999;16:S25–30.

    Article  Google Scholar 

  197. Zhao L, He Z-Y, Zhong X-N, Cui M-L. 18FDG-PET/CT for detection of mediastinal nodal metastasis in non-small cell lung cancer: a meta-analysis. Surg Oncol. 2012;21(3):230–6.

    Google Scholar 

  198. Pak K, Park S, Cheon GJ, Kang KW, Kim I-J, Lee DS, et al. Update on nodal staging in non-small cell lung cancer with integrated positron emission tomography/computed tomography: a meta-analysis. Ann Nucl Med. 2015;29(5):409–19.

    Article  PubMed  Google Scholar 

  199. Liao CY, Chen JH, Liang JA, Yeh JJ, Kao CH. Meta-analysis study of lymph node staging by 18F-FDG PET/CT scan in non-small cell lung cancer: comparison of TB and non-TB endemic regions. Eur J Radiol. 2012;81(11):3518–23.

    Article  PubMed  Google Scholar 

  200. Shen G, Lan Y, Zhang K, Ren P, Jia Z. Comparison of 18F-FDG PET/CT and DWI for detection of mediastinal nodal metastasis in non-small cell lung cancer: a meta-analysis. PLoS One. 2017;12(3):e0173104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Schimmer C. Staging of non-small cell lung cancer: clinical value of positron emission tomography and mediastinoscopy. Interact Cardiovasc Thorac Surg. 2006;5(4):418–23.

    Article  PubMed  Google Scholar 

  202. Schmidt-Hansen M, Baldwin DR, Hasler E, Zamora J, Abraira V. Roqué i Figuls M. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. Cochrane Database Syst Rev. 2014;2014(11):CD009519.

    PubMed Central  Google Scholar 

  203. Quint LE, Tummala S, Brisson LJ, Francis IR, Krupnick AS, Kazerooni EA, et al. Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg. 1996;62(1):246–50.

    Article  CAS  PubMed  Google Scholar 

  204. Li J, Xu W, Kong F, Sun X, Zuo X. Meta-analysis: Accuracy of 18FDG PET-CT for distant metastasis staging in lung cancer patients. Surg Oncol. 2013;22(3):151–5.

    Article  PubMed  Google Scholar 

  205. Yu B, Zhu X, Liang Z, Sun Y, Zhao W, Chen K. Clinical usefulness of 18F-FDG PET/CT for the detection of distant metastases in patients with non-small cell lung cancer at initial staging: a meta-analysis. Cancer Manag Res. 2018;10:1859–64.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Kumar R, Xiu Y, Yu JQ, Takalkar A, El-Haddad G, Potenta S, et al. 18F-FDG PET in evaluation of adrenal lesions in patients with lung cancer. J Nucl Med. 2004;45(12):2058–62.

    Google Scholar 

  207. Jana S, Zhang T, Milstein DM, Isasi CR, Blaufox MD. FDG-PET and CT characterization of adrenal lesions in cancer patients. Eur J Nucl Med Mol Imaging. 2006;33(1):29–35.

    Article  PubMed  Google Scholar 

  208. Wu Q, Luo W, Zhao Y, Xu F, Zhou Q. The utility of 18F-FDG PET/CT for the diagnosis of adrenal metastasis in lung cancer. Nucl Med Commun. 2017;38(12):1117–24.

    Article  PubMed  Google Scholar 

  209. Krüger S, Buck AK, Mottaghy FM, Hasenkamp E, Pauls S, Schumann C, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36(11):1807–12.

    Article  PubMed  Google Scholar 

  210. Hetzel M, Arslandemir C, König H-H, Buck AK, Nüssle K, Glatting G, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18(12):2206–14.

    Article  PubMed  Google Scholar 

  211. Song JW, Oh Y-M, Shim T-S, Kim WS, Ryu J-S, Choi C-M. Efficacy comparison between 18F-FDG PET/CT and bone scintigraphy in detecting bony metastases of non-small-cell lung cancer. Lung Cancer. 2009;65(3):333–8.

    Article  PubMed  Google Scholar 

  212. Qu X, Huang X, Yan W, Wu L, Dai K. A meta-analysis of 18FDG-PET–CT, 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol. 2012;81(5):1007–15.

    Article  PubMed  Google Scholar 

  213. Li Y, Jin G, Su D. Comparison of Gadolinium-enhanced MRI and 18FDG PET/PET-CT for the diagnosis of brain metastases in lung cancer patients: a meta-analysis of 5 prospective studies. Oncotarget. 2017;8(22):35743–9.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Lin M, Ambati C. The management impact of clinically significant incidental lesions detected on staging FDG PET-CT in patients with non-small cell lung cancer (NSCLC): an analysis of 649 cases. Lung Cancer. 2012;76(3):344–9.

    Article  PubMed  Google Scholar 

  215. Fischer B, Lassen U, Mortensen J, Larsen S, Loft A, Bertelsen A, et al. Preoperative staging of lung cancer with combined PET–CT. N Engl J Med. 2009;361(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  216. van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, Stallaert RA, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359(9315):1388–92.

    Article  PubMed  Google Scholar 

  217. Subedi N, Scarsbrook A, Darby M, Korde K, Mc Shane P, Muers MF. The clinical impact of integrated FDG PET–CT on management decisions in patients with lung cancer. Lung Cancer. 2009;64(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  218. Delbeke D, Schöder H, Martin WH, Wahl RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med. 2009;39(5):308–40.

    Article  PubMed  Google Scholar 

  219. Ung YC, Bezjak A, Coakley N, Evans WK. Positron emission tomography with 18fluorodeoxyglucose in radiation treatment planning for non-small cell lung cancer: a systematic review. J Thorac Oncol. 2011;6(1):86–97.

    Article  Google Scholar 

  220. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.

    Article  CAS  PubMed  Google Scholar 

  221. Nestle U, Kremp S, Grosu A-L. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol. 2006;81(2):209–25.

    Article  CAS  PubMed  Google Scholar 

  222. Hallqvist A, Alverbratt C, Strandell A, Samuelsson O, Björkander E, Liljegren A, et al. Positron emission tomography and computed tomographic imaging (PET/CT) for dose planning purposes of thoracic radiation with curative intent in lung cancer patients: a systematic review and meta-analysis. Radiother Oncol. 2017;123(1):71–7.

    Article  PubMed  Google Scholar 

  223. Bucknell NW, Hardcastle N, Bressel M, Hofman MS, Kron T, Ball D, et al. Functional lung imaging in radiation therapy for lung cancer: a systematic review and meta-analysis. Radiother Oncol. 2018;129(2):196–208.

    Article  PubMed  Google Scholar 

  224. Guerra L, Meregalli S, Zorz A, Niespolo R, De Ponti E, Elisei F, et al. Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results. Eur J Nucl Med Mol Imaging. 2014;41(4):702–10.

    Article  PubMed  Google Scholar 

  225. Konert T, Vogel W, MacManus MP, Nestle U, Belderbos J, Grégoire V, et al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol. 2015;116(1):27–34.

    Article  PubMed  Google Scholar 

  226. Pillot G, Siegel BA, Govindan R. Prognostic value of fluorodeoxyglucose positron emission tomography in non-small cell lung cancer: a review. J Thorac Oncol. 2006;1(2):152–9.

    Article  PubMed  Google Scholar 

  227. Goodgame B, Pillot GA, Yang Z, Shriki J, Meyers BF, Zoole J, et al. Prognostic value of preoperative positron emission tomography in resected stage I non-small cell lung cancer. J Thorac Oncol. 2008;3(2):130–4.

    Article  PubMed  Google Scholar 

  228. Tann M, Sandrasegaran K, Winer-Muram HT, Jennings SG, Welling ME, Fletcher JW. Can FDG-PET be used to predict growth of stage I lung cancer? Clin Radiol. 2008;63(8):856–63.

    Article  CAS  PubMed  Google Scholar 

  229. Caicedo C, Garcia-Velloso MJ, Lozano MD, Labiano T, Vigil Diaz C, Lopez-Picazo JM, et al. Role of [18F]FDG PET in prediction of kRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2014;41(11):2058–65.

    Article  CAS  PubMed  Google Scholar 

  230. Swensen SJ, Jett JR, Hartman TE, Midthun DE, Mandrekar SJ, Hillman SL, et al. CT screening for lung cancer: five-year prospective experience. Radiology. 2005;235(1):259–65.

    Article  PubMed  Google Scholar 

  231. Okereke IC, Gangadharan SP, Kent MS, Nicotera SP, Shen C, DeCamp MM. Standard uptake value predicts survival in non–small cell lung cancer. Ann Thorac Surg. 2009;88(3):911–6.

    Article  PubMed  Google Scholar 

  232. Paesmans M, Garcia C, Wong C-YO, Patz Jr EF, Komaki R, Eschmann S, et al. Primary tumour standardised uptake value is prognostic in nonsmall cell lung cancer: a multivariate pooled analysis of individual data. Eur Respir J. 2015;46(6):1751–61.

    Article  CAS  PubMed  Google Scholar 

  233. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, Verbeken EK, Deneffe GJ, et al. Prognostic importance of the standardized uptake value on 18F-fluoro-2-deoxy-glucose–positron emission tomography scan in non–small-cell lung cancer: an analysis of 125 cases. J Clin Oncol. 1999;17(10):3201–6.

    Article  CAS  PubMed  Google Scholar 

  234. Sheikhbahaei S, Verde F, Hales RK, Rowe SP, Solnes LB. Imaging in therapy response assessment and surveillance of lung cancer: evidenced-based review with focus on the utility of 18F-FDG PET/CT. Clin Lung Cancer. 2020;21(6):485–97.

    Article  CAS  PubMed  Google Scholar 

  235. Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med. 2002;43(1):39–45.

    Google Scholar 

  236. Jeong HJ, Min JJ, Park JM, Chung JK, Kim BT, Jeong JM, et al. Determination of the prognostic value of [18F]fluorodeoxyglucose uptake by using positron emission tomography in patients with non-small cell lung cancer. Nucl Med Commun. 2002;23(9):865–70.

    Article  CAS  PubMed  Google Scholar 

  237. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22(16):3255–60.

    Article  PubMed  Google Scholar 

  238. Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg. 2005;130(1):151–9.

    Article  PubMed  Google Scholar 

  239. Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, et al. Positron emission tomography in non–small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003;21(14):2651–7.

    Article  CAS  PubMed  Google Scholar 

  240. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, et al. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34(4):463–71.

    Google Scholar 

  241. Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA. Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg. 2004;78(6):1903–9.

    Article  PubMed  Google Scholar 

  242. Zhang C, Liu J, Tong J, Sun X, Song S, Huang G. 18F-FDG-PET evaluation of pathological tumour response to neoadjuvant therapy in patients with NSCLC. Nucl Med Commun. 2013;34(1):71–7.

    Google Scholar 

  243. Sai KKS, Zachar Z, Bingham PM, Mintz A. Metabolic PET imaging in oncology. AJR Am J Roentgenol. 2017;209(2):270–6.

    Article  PubMed  Google Scholar 

  244. Ettinger DS, Wood DE, Aggarwal C, Aisner DL, Akerley W, Bauman JR, et al. NCCN guidelines insights: non–small cell lung cancer, version 1.2020. J Natl Compr Cancer Netw. 2019;17(12):1464–72.

    Article  CAS  Google Scholar 

  245. Sheikhbahaei S, Mena E, Pattanayak P, Taghipour M, Solnes LB, Subramaniam RM. Molecular imaging and precision medicine. PET Clin. 2017;12(1):105–18.

    Article  PubMed  Google Scholar 

  246. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl_1):122S–50S.

    Article  CAS  PubMed  Google Scholar 

  247. Kim HSHD, Kim BJ, Kim HSHD, Kim JH. Comparison of the morphologic criteria (RECIST) and metabolic criteria (EORTC and PERCIST) in tumor response assessments: a pooled analysis. Korean J Intern Med. 2019;34(3):608–17.

    Article  CAS  PubMed  Google Scholar 

  248. Stefano A, Russo G, Ippolito M, Cosentino S, Murè G, Baldari S, et al. Evaluation of erlotinib treatment response in non-small cell lung cancer using metabolic and anatomic criteria. Q J Nucl Med Mol Imaging. 2016;60(3):264–73.

    PubMed  Google Scholar 

  249. Zwitter M, Rajer M, Stanic K, Vrankar M, Doma A, Cuderman A, et al. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations. Cancer Biol Ther. 2016;17(8):833–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Ahuja V, Coleman RE, Herndon J, Patz EF. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer. 1998;83(5):918–24.

    Article  CAS  PubMed  Google Scholar 

  251. Kwak JJ, Tirumani SH, Van den Abbeele AD, Koo PJ, Jacene HA. Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. RadioGraphics. 2015;35(2):424–37.

    Article  PubMed  Google Scholar 

  252. Beer L, Hochmair M, Prosch H. Pitfalls in the radiological response assessment of immunotherapy. Memo. 2018;11(2):138–43.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Humbert O, Cadour N, Paquet M, Schiappa R, Poudenx M, Chardin D, et al. 18FDG PET/CT in the early assessment of non-small cell lung cancer response to immunotherapy: frequency and clinical significance of atypical evolutive patterns. Eur J Nucl Med Mol Imaging. 2020;47(5):1158–67.

    Google Scholar 

  254. Castello A, Rossi S, Mazziotti E, Toschi L, Lopci E. Hyperprogressive disease in patients with non–small cell lung cancer treated with checkpoint inhibitors: the role of 18F-FDG PET/CT. J Nucl Med. 2020;61(6):821–6.

    Article  CAS  PubMed  Google Scholar 

  255. Lo Russo G, Facchinetti F, Tiseo M, Garassino MC, Ferrara R. Hyperprogressive disease upon immune checkpoint blockade: focus on non–small cell lung cancer. Curr Oncol Rep. 2020;22(5):41.

    Article  PubMed  Google Scholar 

  256. Moon SH, Cho S-H, Park LC, Ji JH, Sun J-M, Ahn JS, et al. Metabolic response evaluated by 18F-FDG PET/CT as a potential screening tool in identifying a subgroup of patients with advanced non-small cell lung cancer for immediate maintenance therapy after first-line chemotherapy. Eur J Nucl Med Mol Imaging. 2013;40(7):1005–13.

    Article  CAS  PubMed  Google Scholar 

  257. Antoniou AJ, Marcus C, Tahari AK, Wahl RL, Subramaniam RM. Follow-up or surveillance 18F-FDG PET/CT and survival outcome in lung cancer patients. J Nucl Med. 2014;55(7):1062–8.

    Article  CAS  PubMed  Google Scholar 

  258. Marcus C, Paidpally V, Antoniou A, Zaheer A, Wahl RL, Subramaniam RM. 18F-FDG PET/CT and lung cancer: value of furth and subsequent posttherapy follow-up scans for patient management. J Nucl Med. 2015;56(2):204–8.

    Google Scholar 

  259. Kalemkerian G. Small cell lung cancer. Semin Respir Crit Care Med. 2016;37(05):783–96.

    Article  PubMed  Google Scholar 

  260. Lu Y-Y, Chen J-H, Liang J-A, Chu S, Lin W-Y, Kao C-H. 18F-FDG PET or PET/CT for detecting extensive disease in small-cell lung cancer. Nucl Med Commun. 2014;35(7):697–703.

    Google Scholar 

  261. van Loon J, De Ruysscher D, Wanders R, Boersma L, Simons J, Oellers M, et al. Selective nodal irradiation on basis of 18FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int J Radiat Oncol. 2010;77(2):329–36.

    Article  Google Scholar 

  262. He Y-Q, Gong H-L, Deng Y-F, Li W-M. Diagnostic efficacy of PET and PET/CT for recurrent lung cancer: a meta-analysis. Acta Radiol. 2014;55(3):309–17.

    Article  PubMed  Google Scholar 

  263. Lee YJ, Cho A, Cho BC, Yun M, Kim SK, Chang J, et al. High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin Cancer Res. 2009;15(7):2426–32.

    Article  CAS  PubMed  Google Scholar 

  264. Zhu D, Wang Y, Wang L, Chen J, Byanju S, Zhang H, et al. Prognostic value of the maximum standardized uptake value of pre-treatment primary lesions in small-cell lung cancer on 18F-FDG PET/CT: a meta-analysis. Acta Radiol. 2018;59(9):1082–90.

    Article  PubMed  Google Scholar 

  265. van Loon J, Offermann C, Bosmans G, Wanders R, Dekker A, Borger J, et al. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol. 2008;87(1):49–54.

    Google Scholar 

  266. Gregory D, Brennan S, Stillie A, Herschtal A, Hicks R, MacManus M, et al. Impact of 18F-fluorodeoxyglucose positron emission tomography in the staging and treatment response assessment of extra-pulmonary small-cell cancer. J Med Imaging Radiat Oncol. 2010;54(2):100–7.

    Article  CAS  PubMed  Google Scholar 

  267. Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci. 2006;103(44):16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30(5):781–93.

    Article  CAS  PubMed  Google Scholar 

  269. Koukouraki S, Strauss LG, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging. 2006;33(10):1115–22.

    Article  CAS  PubMed  Google Scholar 

  270. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50(12):1927–32.

    Article  PubMed  Google Scholar 

  271. Haug A, Auernhammer CJ, Wängler B, Tiling R, Schmidt G, Göke B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36(5):765–70.

    Article  CAS  PubMed  Google Scholar 

  272. Jindal T, Kumar A, Venkitaraman B, Meena M, Kumar R, Malhotra A, et al. Evaluation of the role of [18F]FDG-PET/CT and [68Ga]DOTATOC-PET/CT in differentiating typical and atypical pulmonary carcinoids. Cancer Imaging. 2011;11(1):70–5.

    PubMed  PubMed Central  Google Scholar 

  273. Venkitaraman B, Karunanithi S, Kumar A, Khilnani GC, Kumar R. Role of 68Ga-DOTATOC PET/CT in initial evaluation of patients with suspected bronchopulmonary carcinoid. Eur J Nucl Med Mol Imaging. 2014;41(5):856–64.

    Article  CAS  PubMed  Google Scholar 

  274. Jiang Y, Hou G, Cheng W. The utility of 18F-FDG and 68Ga-DOTA-Peptide PET/CT in the evaluation of primary pulmonary carcinoid. Medicine (Baltimore). 2019;98(10):e14769.

    Article  CAS  Google Scholar 

  275. Zidan L, Iravani A, Kong G, Akhurst T, Michael M, Hicks RJ. Theranostic implications of molecular imaging phenotype of well-differentiated pulmonary carcinoid based on 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(1):204–16.

    Article  CAS  PubMed  Google Scholar 

  276. Bianconi F, Palumbo I, Spanu A, Nuvoli S, Fravolini ML, Palumbo B. PET/CT radiomics in lung cancer: an overview. Appl Sci. 2020;10(5):1718.

    Article  CAS  Google Scholar 

  277. Ferreira JR, Oliveira MC, de Azevedo-Marques PM. Characterization of pulmonary nodules based on features of margin sharpness and texture. J Digit Imaging. 2018;31(4):451–63.

    Article  PubMed  Google Scholar 

  278. Wu W, Pierce LA, Zhang Y, Pipavath SNJ, Randolph TW, Lastwika KJ, et al. Comparison of prediction models with radiological semantic features and radiomics in lung cancer diagnosis of the pulmonary nodules: a case-control study. Eur Radiol. 2019;29(11):6100–8.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Balagurunathan Y, Schabath MB, Wang H, Liu Y, Gillies RJ. Quantitative imaging features improve discrimination of malignancy in pulmonary nodules. Sci Rep. 2019;9(1):8528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Jia Y, Gong W, Zhang Z, Tu G, Li J, Xiong F, et al. Comparing the diagnostic value of 18F-FDG-PET/CT versus CT for differentiating benign and malignant solitary pulmonary nodules: a meta-analysis. J Thorac Dis. 2019;11(5):2082–98.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Miwa K, Inubushi M, Wagatsuma K, Nagao M, Murata T, Koyama M, et al. FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur J Radiol. 2014;83(4):715–9.

    Article  PubMed  Google Scholar 

  282. Chen S, Harmon S, Perk T, Li X, Chen M, Li Y, et al. Diagnostic classification of solitary pulmonary nodules using dual time 18F-FDG PET/CT image texture features in granuloma-endemic regions. Sci Rep. 2017;7(1):9370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Hu Y, Zhao X, Zhang J, Han J, Dai M. Value of 18F-FDG PET/CT radiomic features to distinguish solitary lung adenocarcinoma from tuberculosis. Eur J Nucl Med Mol Imaging. 2021;48(1):231–40.

    Article  PubMed  Google Scholar 

  284. Kirienko M, Cozzi L, Rossi A, Voulaz E, Antunovic L, Fogliata A, et al. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur J Nucl Med Mol Imaging. 2018;45(10):1649–60.

    Article  PubMed  Google Scholar 

  285. Bianconi F, Palumbo I, Fravolini ML, Chiari R, Minestrini M, Brunese L, et al. Texture analysis on [18F]FDG PET/CT in non-small-cell lung cancer: correlations between PET features, CT features, and histological types. Mol Imaging Biol. 2019;21(6):1200–9.

    Article  CAS  PubMed  Google Scholar 

  286. Nie P, Yang G, Wang N, Yan L, Miao W, Duan Y, et al. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma. Eur J Nucl Med Mol Imaging. 2021;48(1):217–30.

    Article  PubMed  Google Scholar 

  287. Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 2018;45(2):207–17.

    Article  PubMed  Google Scholar 

  288. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics Signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. 2016;281(3):947–57.

    Article  PubMed  Google Scholar 

  289. Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M, Smedby Ö. Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Phys Medica. 2019;60:58–65.

    Article  Google Scholar 

  290. Krarup MMK, Nygård L, Vogelius IR, Andersen FL, Cook G, Goh V, et al. Heterogeneity in tumours: validating the use of radiomic features on 18F-FDG PET/CT scans of lung cancer patients as a prognostic tool. Radiother Oncol. 2020;144:72–8.

    Article  CAS  PubMed  Google Scholar 

  291. Oikonomou A, Khalvati F, Tyrrell PN, Haider MA, Tarique U, Jimenez-Juan L, et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Sci Rep. 2018;8(1):4003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Mu W, Qi J, Lu H, Balagurunathan Y, Gillies RJ, Tunali I, et al. Radiomic biomarkers from PET/CT multi-modality fusion images for the prediction of immunotherapy response in advanced non-small cell lung cancer patients. In: Mori K, Petrick N, editors. Medical imaging 2018: computer-aided diagnosis. Proceedings Vol. 10575. SPIE; 2018. p. 136. https://spie.org/Publications/Proceedings/Volume/10575?SSO=1

  293. Treglia G, Sadeghi R, Annunziata S, Lococo F, Cafarotti S, Prior JO, et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the assessment of pleural abnormalities in cancer patients: a systematic review and a meta-analysis. Lung Cancer. 2014;83(1):1–7.

    Article  PubMed  Google Scholar 

  294. Treglia G, Sadeghi R, Annunziata S, Lococo F, Cafarotti S, Bertagna F, et al. Diagnostic accuracy of 18F-FDG-PET and PET/CT in the differential diagnosis between malignant and benign pleural lesions. Acad Radiol. 2014;21(1):11–20.

    Article  PubMed  Google Scholar 

  295. Porcel JM, Hernández P, Martínez-Alonso M, Bielsa S, Salud A. Accuracy of fluorodeoxyglucose-PET imaging for differentiating benign from malignant pleural effusions. Chest. 2015;147(2):502–12.

    Article  PubMed  Google Scholar 

  296. Berzenji L, Van Schil PE, Carp L. The eighth TNM classification for malignant pleural mesothelioma. Transl Lung Cancer Res. 2018;7(5):543–9.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Flores RM, Akhurst T, Gonen M, Larson SM, Rusch VW. Positron emission tomography defines metastatic disease but not locoregional disease in patients with malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 2003;126(1):11–5.

    Article  PubMed  Google Scholar 

  298. Mavi A, Basu S, Cermik TF, Urhan M, Bathaii M, Thiruvenkatasamy D, et al. Potential of dual time point FDG-PET imaging in differentiating malignant from benign pleural disease. Mol Imaging Biol. 2009;11(5):369–78.

    Article  PubMed  Google Scholar 

  299. Erasmus JJ, Truong MT, Smythe WR, Munden RF, Marom EM, Rice DC, et al. Integrated computed tomography-positron emission tomography in patients with potentially resectable malignant pleural mesothelioma: staging implications. J Thorac Cardiovasc Surg. 2005;129(6):1364–70.

    Article  PubMed  Google Scholar 

  300. Sørensen JB, Ravn J, Loft A, Brenøe J, Berthelsen AK. Preoperative staging of mesothelioma by 18F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography fused imaging and mediastinoscopy compared to pathological findings after extrapleural pneumonectomy. Eur J Cardio-Thoracic Surg. 2008;34(5):1090–6.

    Article  Google Scholar 

  301. Subramaniam R, Wilcox B, Aubry M, Jett J, Peller P. 18F-fluoro-2-deoxy-d-glucose positron emission tomography and positron emission tomography/computed tomography imaging of malignant pleural mesothelioma. J Med Imaging Radiat Oncol. 2009;53(2):160–9.

    Google Scholar 

  302. Nowak AK, Armato SG, Ceresoli GL, Yildirim H, Francis RJ. Imaging in pleural mesothelioma: a review of imaging research presented at the 9th international meeting of the International Mesothelioma Interest Group. Lung Cancer. 2010;70(1):1–6.

    Article  PubMed  Google Scholar 

  303. Ceresoli GL, Chiti A, Zucali PA, Rodari M, Lutman RF, Salamina S, et al. Early response evaluation in malignant pleural mesothelioma by positron emission tomography with [18F]fluorodeoxyglucose. J Clin Oncol. 2006;24(28):4587–93.

    Article  PubMed  Google Scholar 

  304. Lee HY, Hyun SH, Lee KS, Kim B-T, Kim J, Shim YM, et al. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implications. Ann Surg Oncol. 2010;17(10):2787–94.

    Article  PubMed  Google Scholar 

  305. Genestreti G, Moretti A, Piciucchi S, Giovannini N, Galassi R, Scarpi E, et al. FDG PET/CT response evaluation in malignant pleural mesothelioma patients treated with talc pleurodesis and chemotherapy. J Cancer. 2012;3:241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Pehlivan B, Topkan E, Onal C, Nursal GN, Yuksel O, Dolek Y, et al. Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma. Radiat Oncol. 2009;4(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  307. Mac Leod N, Stobo J, O’Rourke N, Hicks J, Moore K, Sankaralingam M, et al. F-18 FDG PET-CT influences target delineation when combined with standard CT-based radiotherapy planning in the palliative setting in malignant pleural mesothelioma; an exploratory study. Reports Radiother Oncol. 2015;2(2):23–8.

    Google Scholar 

  308. Mikail N, Khalil A, Rouzet F. Mediastinal masses: 18F-FDG-PET/CT features based on the international thymic malignancy interest group classification. Semin Nucl Med. 2021;51(1):79–97.

    Article  PubMed  Google Scholar 

  309. Toker A, Erus S, Kaba E, Tanju S, Ozkan B. Has there been a paradigm shift in mediastinal surgery from open to minimally invasive, and from magnetic resonance imaging (MRI) to positron emission tomography–computerized tomography (PET-CT) in the last decade? Surg Endosc. 2014;28(3):861–5.

    Article  PubMed  Google Scholar 

  310. Fukumoto K, Taniguchi T, Ishikawa Y, Kawaguchi K, Fukui T, Kato K, et al. The utility of [18F]-fluorodeoxyglucose positron emission tomography-computed tomography in thymic epithelial tumours. Eur J Cardio-Thoracic Surg. 2012;42(6):e152–6.

    Article  Google Scholar 

  311. Treglia G, Sadeghi R, Giovanella L, Cafarotti S, Filosso P, Lococo F. Is 18F-FDG PET useful in predicting the WHO grade of malignancy in thymic epithelial tumors? A meta-analysis. Lung Cancer. 2014;86(1):5–13.

    Article  PubMed  Google Scholar 

  312. Benveniste MFK, Moran CA, Mawlawi O, Fox PS, Swisher SG, Munden RF, et al. FDG PET-CT Aids in the preoperative assessment of patients with newly diagnosed thymic epithelial malignancies. J Thorac Oncol. 2013;8(4):502–10.

    Article  PubMed  Google Scholar 

  313. Thomas A, Mena E, Kurdziel K, Venzon D, Khozin S, Berman AW, et al. 18F-fluorodeoxyglucose positron emission tomography in the management of patients with thymic epithelial tumors. Clin Cancer Res. 2013;19(6):1487–93.

    Google Scholar 

  314. Schwenzer NF, Schraml C, Müller M, Brendle C, Sauter A, Spengler W, et al. Pulmonary lesion assessment: comparison of whole-body hybrid MR/PET and PET/CT imaging – pilot study. Radiology. 2012;264(2):551–8.

    Article  PubMed  Google Scholar 

  315. Heusch P, Buchbender C, Kohler J, Nensa F, Gauler T, Gomez B, et al. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med. 2014;55(3):373–8.

    Article  CAS  PubMed  Google Scholar 

  316. Fraioli F, Screaton NJ, Janes SM, Win T, Menezes L, Kayani I, et al. Non-small-cell lung cancer resectability: diagnostic value of PET/MR. Eur J Nucl Med Mol Imaging. 2015;42(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  317. Huellner MW, de Galiza BF, Husmann L, Pietsch CM, Mader CE, Burger IA, et al. TNM staging of non-small cell lung cancer: comparison of PET/MR and PET/CT. J Nucl Med. 2016;57(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  318. Fan L, Sher A, Kohan A, Vercher-Conejero J, Rajiah P. PET/MRI in lung cancer. Semin Roentgenol. 2014;49(4):291–303.

    Article  PubMed  Google Scholar 

  319. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36(S1):113–20.

    Article  Google Scholar 

  320. Umeda Y, Morikawa M, Anzai M, Ameshima S, Kadowaki M, Waseda Y, et al. Predictive value of integrated 18F-FDG PET/MRI in the early response to nivolumab in patients with previously treated non-small cell lung cancer. J Immunother Cancer. 2020;8(1):e000349.

    Article  PubMed  PubMed Central  Google Scholar 

  321. Langer N, Langer S, Johannesen H, Hansen A, Costa J, Klausen T, et al. Very early response evaluation by PET/MR in patients with lung cancer – timing and feasibility. Diagnostics. 2019;9(1):35.

    Article  CAS  PubMed Central  Google Scholar 

  322. Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JWG, Willemsen ATM, et al. Comparison of 11C-choline and 18F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med. 2002;43(2):167–72.

    PubMed  Google Scholar 

  323. Hsieh H-J, Lin S-H, Lin K-H, Lee C-Y, Chang C-P, Wang S-J. The feasibility of 11C-methionine-PET in diagnosis of solitary lung nodules/masses when compared with 18F-FDG-PET. Ann Nucl Med. 2008;22(6):533–8.

    Article  PubMed  Google Scholar 

  324. Schmidt LH, Heitkötter B, Schulze AB, Schliemann C, Steinestel K, Trautmann M, et al. Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer. PLoS One. 2017;12(10):e0186280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Jochumsen MR, Gormsen LC, Nielsen GL. 68Ga-PSMA avid primary adenocarcinoma of the lung with complementary low 18F-FDG uptake. Clin Nucl Med. 2018;43(2):117–9.

    Google Scholar 

  326. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30(6):844–50.

    Article  CAS  PubMed  Google Scholar 

  327. Eschmann S-M, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46(2):253–60.

    PubMed  Google Scholar 

  328. Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJR. The role of new PET tracers for lung cancer. Lung Cancer. 2016;94:7–14.

    Article  PubMed  Google Scholar 

  329. Yang W, Zhang Y, Fu Z, Sun X, Mu D, Yu J. Imaging proliferation of 18F-FLT PET/CT correlated with the expression of microvessel density of tumour tissue in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39(8):1289–96.

    Article  CAS  PubMed  Google Scholar 

  330. Li XF, Dai D, Song XY, Liu JJ, Zhu YJ, Xu WG. Comparison of the diagnostic performance of 18F-fluorothymidine versus 18F-fluorodeoxyglucose positron emission tomography on pulmonary lesions: a meta analysis. Mol Clin Oncol. 2015;3(1):101–8.

    Article  PubMed  Google Scholar 

  331. Wang Z, Wang Y, Sui X, Zhang W, Shi R, Zhang Y, et al. Performance of FLT-PET for pulmonary lesion diagnosis compared with traditional FDG-PET: a meta-analysis. Eur J Radiol. 2015;84(7):1371–7.

    Article  PubMed  Google Scholar 

  332. Everitt SJ, Ball DL, Hicks RJ, Callahan J, Plumridge N, Collins M, et al. Differential 18F-FDG and 18F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J Nucl Med. 2014;55(7):1069–74.

    Article  CAS  PubMed  Google Scholar 

  333. Trigonis I, Koh PK, Taylor B, Tamal M, Ryder D, Earl M, et al. Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur J Nucl Med Mol Imaging. 2014;41(4):682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Gao S, Liu N, Li W, Zhao S, Teng X, Fu Z, et al. A pilot study on imaging of integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Int J Radiat Oncol. 2014;90(5):S9.

    Article  Google Scholar 

  335. Zheng K, Liang N, Zhang J, Lang L, Zhang W, Li S, et al. 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J Nucl Med. 2015;56(12):1823–7.

    Google Scholar 

  336. Sun X, Xiao Z, Chen G, Han Z, Liu Y, Zhang C, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med. 2018;10(431):eaan8840.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ben-Haim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Arnon-Sheleg, E., Win, T., Israel, O., Guralnik, L., Moskovitz, M., Ben-Haim, S. (2022). Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_13-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_13-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors
    Published:
    20 May 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-4

  2. Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors
    Published:
    02 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-3

  3. Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors
    Published:
    05 July 2017

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-2

  4. Original

    Lung and Mediastinal Tumors
    Published:
    10 November 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-1