Skip to main content

Advertisement

Log in

Potential of Dual Time Point FDG-PET Imaging in Differentiating Malignant from Benign Pleural Disease

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Aim

The aim of this study was to assess the utility of dual time point 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) imaging in differentiating benign from malignant pleural disease.

Methods

Fifty-five consecutive patients of suspected malignant pleural mesothelioma (MPM) and recurrence of MPM who were referred for the evaluation underwent two sequential 18F-FDG-PET scans (dual time point imaging). The average percent change in the maximum standardized uptake values (Δ%SUVmax) of the lesion/lesions between time point 1 (SUVmax1) and time point 2 (SUVmax2) was calculated. All PET results were correlated with the histopathological or cytopathology results. Patients were divided into three principal groups (A = newly diagnosed MPM, B = recurrent MPM, and C = benign pleural disease). The parameters of 18F-FDG uptake (SUVmax values and its changes over time) were compared among groups.

Results

Among the 55 patients who had undergone dual time point 18F-FDG-PET studies, 44 were diagnosed with MPM (28 newly diagnosed and 16 had recurrence). The PET studies demonstrated 229 malignant pleural lesions in these patients. The remaining 11 patients were proven to have benign pleural disease. The mean ± SD of the SUVmax1, SUVmax2, and the Δ%SUVmax of the all lesions of each patient in groups A, B, and C were 5.0 ± 2.2%, 5.8 ± 2.8%, and 12.8 ± 8.4%; 4.6 ± 1.7%, 5.3 ± 2.0%, 13.8 ± 9.2%; and 1.6 ± 0.4%, 1.4 ± 0.3%, and–9.6 ± 19.1%, respectively. The mean ± SD of the SUVmax1, SUVmax2, and Δ%SUVmax in patients with both newly diagnosed and recurrent MPM were significantly higher than those of benign pleural disease group (p < 0.0001). For each patient, the most intense (hottest) lesion’s SUVmax1, SUVmax2, and Δ%SUVmax were also compared among the aforementioned groups, and these results again confirmed that MPM lesions had significantly higher values than those of benign pleural lesions (p < 0.0001).

Conclusions

There is an increasing uptake of 18F-FDG over time in pleural malignancies, whereas the uptake in benign pleural disease generally stays stable or decreases over time. Therefore, dual time point imaging appears to be an effective approach in differentiating benign from malignant pleural disease, which increases the sensitivity and is also helpful in guiding the biopsy site for a successful diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Alavi A, Lakhani P, Mavi A, Kung JW, Zhuang H (2004) PET: a revolution in medical imaging. Radiol Clin North Am 42(6):983–1001

    Article  PubMed  Google Scholar 

  2. Zhuang H, Pourdehnad M, Lambright ES et al (2001) Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417

    PubMed  CAS  Google Scholar 

  3. Hustinx R, Smith RJ, Benard F et al (1999) Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 26:1345–1348

    Article  PubMed  CAS  Google Scholar 

  4. Matthies A, Hickeson M, Cuchiara A, Alavi A (2002) Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 43:871–875

    PubMed  Google Scholar 

  5. Benard F, Sterman D, Smith RJ, Kaiser LR, Albelda SM, Alavi A (1998) Metabolic imaging of malignant pleural mesothelioma with fluorodeoxyglucose positron emission tomography. Chest 114:713–722

    Article  PubMed  CAS  Google Scholar 

  6. Buck A, Schirrmeister H, Kuhn T et al (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29:1317–1323

    Article  PubMed  CAS  Google Scholar 

  7. Price B (1997) Analysis of current trends in United States mesothelioma incidence. Am J Epidemiol 145:211–218

    PubMed  CAS  Google Scholar 

  8. Bertram P, Adam W (2004) Mesothelioma trends in the United States: an update based on surveillance, epidemiology, and end results program data for 1973 through 2003. Am J Epidemiol 159:107–112

    Article  Google Scholar 

  9. Muller N (1993) Imaging of the pleura. Radiology 186:297–309

    PubMed  CAS  Google Scholar 

  10. Falaschi F, Boraschi P, Musante F, Volpini F, D'Alessandro F, Torri T, Barbieri L (1992) The computed tomographic diagnosis of malignant pleural mesothelioma. A multicenter study. Radiol Med (Torino) 84(1-2):43–7

    CAS  Google Scholar 

  11. Rusch V, Godwin J, Shuman W (1988) The role of computed tomography scanning in the initial assessment and follow-up of malignant pleural mesothelioma. J Thorac Cardiovasc Surg 96:171–177

    PubMed  CAS  Google Scholar 

  12. Metintas M, Ozdemir N, Isiksoy S et al (1995) CT-guided pleural biopsy in the diagnosis of malignant mesothelioma. J Comput Assist Tomogr 19:370–374

    Article  PubMed  CAS  Google Scholar 

  13. Collins T, Sahn S (1987) Thoracocentesis. Clinical value, complications, technical problems, and patient experience. Chest 91:817–822

    Article  PubMed  CAS  Google Scholar 

  14. Menzies R, Charbonneau M (1991) Thoracoscopy for the diagnosis of pleural disease. Ann Intern Med 114:271–276

    PubMed  CAS  Google Scholar 

  15. Carretta A, Landoni C, Melloni G, Ceresoli GL, Compierchio A, Fazio F et al (2000) 18-FDG positron emission tomography in the evaluation of malignant pleural diseases—a pilot study. Eur J Cardiothorac Surg 17:377–383

    Article  PubMed  CAS  Google Scholar 

  16. Kramer H, Pieterman RM, Slebos DJ, Timens W, Vaalburg W, Koeter GH et al (2004) PET for the evaluation of pleural thickening observed on CT. J Nucl Med 45:995–998

    PubMed  Google Scholar 

  17. Gupta NC, Rogers JS, Graeber GM, Gregory JL, Waheed U, Mullet D et al (2002) Clinical role of F-18 fluorodeoxyglucose positron emission tomography imaging in patients with lung cancer and suspected malignant pleural effusion. Chest 122:1918–1924

    Article  PubMed  CAS  Google Scholar 

  18. Bury T, Paulus P, Dowlati A, Corhay JL, Rigo P, Radermecker MF (1997) Evaluation of pleural diseases with FDG-PET imaging: preliminary report. Thorax 52:187–189

    Article  PubMed  CAS  Google Scholar 

  19. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ (1994) The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 35:1308–1312

    PubMed  CAS  Google Scholar 

  20. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26:22–30

    Article  PubMed  CAS  Google Scholar 

  21. Mavi A, Urhan M, Yu JQ et al (2006) Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 47(9):1440–1446

    PubMed  Google Scholar 

  22. Mavi A, Lakhani P, Zhuang H et al (2005) Fluorodeoxyglucose-PET in characterizing solitary pulmonary nodules, assessing pleural diseases, and the initial staging, restaging, therapy planning, and monitoring response of lung cancer. Radiol Clin North Am 43(1):1–21

    Article  PubMed  Google Scholar 

  23. Basu S, Mavi A, Cermik T, Houseni M, Alavi A (2008) Implications of standardized uptake value measurements of the primary lesions in proven cases of breast carcinoma with different degree of disease burden at diagnosis: does 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography predict tumor biology? Mol Imaging Biol 10(1):62–66

    Article  PubMed  Google Scholar 

  24. Demura Y, Tsuchida T, Ishizaki T et al (2003) 18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med 44:540–548

    PubMed  CAS  Google Scholar 

  25. Mavi A, Cermik TF, Urhan M, Yu JQ, Zhuang H, Alavi A (2006) Dual time point FDG-PET imaging can help distinguishing residual invasive tumor from post biopsy inflammation in newly diagnosed breast cancer. 9th Congress of World Federation of Nuclear Medicine & Biology. World J Nucl Med (WJNM) 5(supp 1):S77

    Google Scholar 

  26. Bedigian MP, Benard F, Smith RJ, Karp JS, Alavi A (1998) Whole-body positron emission tomography for oncology using singles transmission scanning with segmentation and ordered subsets expectation maximization (OS-EM) reconstruction. Eur J Nucl Med 25:659–661

    PubMed  CAS  Google Scholar 

  27. Aisner J (1995) Current approach to malignant mesothelioma of the pleura. Chest 107:332S–344S

    Article  PubMed  CAS  Google Scholar 

  28. Rusch VW (1995) A proposed new international TNM staging system for malignant pleural mesothelioma. From the International Mesothelioma Interest Group. Chest 108(4):1122–1128

    Article  PubMed  CAS  Google Scholar 

  29. Pisani R, Colby T, Williams D (1988) Malignant mesothelioma of the pleura. Mayo Clin Proc 63:1234–1244

    PubMed  CAS  Google Scholar 

  30. Sugarbaker DJ, Jaklitsch MT, Liptay MJ (1995) Mesothelioma and radical multimodality therapy: who benefits? Chest 107:345S–350S

    Article  PubMed  CAS  Google Scholar 

  31. Erasmus JJ, McAdams HP, Rossi SE, Goodman PC, Coleman RE, Patz EF (2000) FDG PET of pleural effusions in patients with non-small cell lung cancer. Am J Roentgenol 175:245–249

    CAS  Google Scholar 

  32. Falaschi F, Battolla L, Mascalchi M, Cioni R, Zampa V, Lencioni R et al (1996) Usefulness of MR signal intensity in distinguishing benign from malignant pleural disease. AJR Am J Roentgenol 166:963–968

    PubMed  CAS  Google Scholar 

  33. Schneider DB, Clary-Macy C, Challa S, Sasse KC, Merrick SH, Hawkins R et al (2000) Positron emission tomography with F18-fluorodeoxyglucose in the staging and preoperative evaluation of malignant pleural mesothelioma. J Thorac Cardiovasc Surg 120:128–133

    Article  PubMed  CAS  Google Scholar 

  34. Nanni C, Castellucci P, Farsad M, Pinto C, Moretti A, Pettinato C et al (2004) Role of F-18-FDG PET for evaluating malignant pleural mesothelioma. Cancer Biother Radiopharm 19:149–154

    Article  PubMed  Google Scholar 

  35. Patz EF Jr., Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE et al (1993) Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 188:487–490

    PubMed  Google Scholar 

  36. Rusch VW, Venkatraman ES (1999) Important prognostic factors in patients with malignant pleural mesothelioma, managed surgically. Ann Thorac Surg 68:1799–1804

    Article  PubMed  CAS  Google Scholar 

  37. Benard F, Sterman D, Smith RJ, Kaiser LR, Albelda SM, Alavi A (1999) Prognostic value of FDG PET imaging in malignant pleural mesothelioma. J Nucl Med 40:1241–1245

    PubMed  CAS  Google Scholar 

  38. Alavi A, Gupta N, Alberini JL, Hickeson M, Adam LE, Bhargava P et al (2002) Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med 32:293–321

    Article  PubMed  Google Scholar 

  39. Haberkorn U (2004) Positron emission tomography in the diagnosis of mesothelioma. Lung Cancer 45 Suppl 1:S73–S76

    Article  Google Scholar 

  40. Nakamoto Y, Higashi T, Sakahara H et al (2000) Delayed (18)F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 89:2547–2554

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavi, A., Basu, S., Cermik, T.F. et al. Potential of Dual Time Point FDG-PET Imaging in Differentiating Malignant from Benign Pleural Disease. Mol Imaging Biol 11, 369–378 (2009). https://doi.org/10.1007/s11307-009-0212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0212-5

Key words

Navigation