Skip to main content

Markers of Bacterial Translocation in Type 2 Diabetes Mellitus

  • Living reference work entry
  • First Online:
Biomarkers in Diabetes

Abstract

Type 2 Diabetes mellitus is a multifactorial metabolic disorder. The growing body of evidence linking the gut microbiome to host metabolism has been accompanied by change in the study of metabolic illnesses including type 2 diabetes. Disturbance in the balance of gut microbiome “gut dysbiosis” has led to the emergence of the concept of “leaky gut” and metabolic endotoxemia. Previous studies observed higher lipopolysaccharide or lipopolysaccharide binding protein concentrations in diabetics than in healthy controls. Translocation of bacteria and their products through the disrupted gut barrier increased the circulation of markers that could be linked to increased intestinal permeability. The end result of translocated products is the stimulation of systemic inflammatory response affecting many organs and increasing insulin resistance thus aggravating diabetes. It is anticipated that by gaining a better understanding of the mechanism of leaky gut and bacterial translocation in diabetes, scientists will be able to develop novel diagnostic and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHR:

Aryl hydrocarbon receptor

AMPs:

Antimicrobial peptides

COVID-19:

Coronavirus Disease 2019

DCs:

Dendritic cells

DNA:

Deoxyribonucleic acid

ELISA:

Enzyme linked immunosorbent assay

EndoCAb:

Endotoxin core antibodies

GIT:

Gastrointestinal tract

GLP-1:

Glucagon-like peptide-1

GLUT:

Glucose transporter

IAP:

Intestinal alkaline phosphatase

IL:

Interleukin

INF-γ:

interferon-gamma

LAL:

Limulus Amoebocyte Lysate

LDL-R:

Low density lipoprotein receptor

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

NAFLD:

Non-alcoholic fatty liver disease

NF-κB:

Nuclear Factor Kappa B

PAMPs:

Pathogen associated molecular patterns

PG:

Peptidoglycan

RT-PCR:

Reverse transcriptase-Polymerase chain reaction

SARS-CoV-2:

Severe acute respiratory syndrome Coronavirus 2

SCFAs:

Short chain fatty acids

sIgA:

Secretory immunoglobulin A

T2DM:

Type 2 diabetes mellitus

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor alpha

16SrRNA:

16S ribosomal ribonucleic acid

References

  • Abd Elaaty TA, Ismail AA, Meheissen MA, El Essawy NR. Bacterial translocation markers in type 2 diabetes mellitus: their association with glycemic control and diabetic kidney disease in Egyptian patients. Clin Diabetol. 2019;8(4):195–204.

    Article  CAS  Google Scholar 

  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  • Al-Attas OS, Al-Daghri NM, Al-Rubeaan K, et al. Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc Diabetol. 2009;8:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011a;3(9):559–72.

    Google Scholar 

  • Amar J, Serino M, Lange C, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011b;54(12):3055–61.

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM. Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci. 2001;16:126–30.

    CAS  PubMed  Google Scholar 

  • Aw W, Fukuda S. Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Semin Immunopathol. 2015;37(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  • Böni-Schnetzler M, Häuselmann SP, Dalmas E, et al. β cell-specific deletion of the IL-1 receptor antagonist impairs β cell proliferation and insulin secretion. Cell Rep. 2018;22(7):1774–86.

    Article  PubMed  CAS  Google Scholar 

  • Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult Scler. 2020;26(11):1340–50.

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.

    Article  CAS  PubMed  Google Scholar 

  • Cavaillon JM, Fitting C, Haeffner-Cavaillon N, Kirsch SJ, Warren HS. Cytokine response by monocytes and macrophages to free and lipoprotein-bound lipopolysaccharide. Infect Immun. 1990;58(7):2375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakaroun RM, Massier L, Kovacs P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients. 2020;12(4):1082.

    Article  CAS  PubMed Central  Google Scholar 

  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, Ocaña-Wilhelmi L, Cardona F, Tinahones FJ. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis. 2015;11(4):933–9.

    Article  PubMed  Google Scholar 

  • Cox AJ, Zhang P, Bowden DW, et al. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes Metab. 2017;43(2):163–6.

    Article  CAS  PubMed  Google Scholar 

  • Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–7.

    Article  CAS  PubMed  Google Scholar 

  • Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(6):1131S–41S.

    Article  CAS  PubMed  Google Scholar 

  • Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.

    Article  CAS  PubMed  Google Scholar 

  • Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71.

    Article  CAS  PubMed  Google Scholar 

  • Fasano A. Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  • Finney SJ, Leaver SK, Evans TW, Burke-Gaffney A. Differences in lipopolysaccharide- and lipoteichoic acid-induced cytokine/chemokine expression. Intensive Care Med. 2012;38(2):324–32.

    Article  CAS  PubMed  Google Scholar 

  • Fotis L, Shaikh N, Baszis KW, et al. Serologic evidence of gut-driven systemic inflammation in juvenile idiopathic arthritis. J Rheumatol. 2017;44(11):1624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui H. Gut-liver axis in liver cirrhosis: how to manage leaky gut and endotoxemia. World J Hepatol. 2015;7(3):425–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukui H. Endotoxin and other microbial translocation markers in the blood: a clue to understand leaky gut syndrome. Cell Mol Med. 2016;2:3.

    Article  Google Scholar 

  • Gao QY, Chen YX, Fang JY. 2020 Novel coronavirus infection and gastrointestinal tract. J Dig Dis. 2020;21(3):125–6.

    Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 2001;167(4):1882–5.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal barrier dysfunction, LPS translocation, and disease development. J Endocr Soc. 2020;4(2):bvz039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grys TE, Siegel MB, Lathem WW, Welch RA. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect Immun. 2005;73(3):1295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol. 2015;195(10):4999–5010.

    Article  CAS  PubMed  Google Scholar 

  • Harris HW, Grunfeld C, Feingold KR, et al. Chylomicrons alter the fate of endotoxin, decreasing tumor necrosis factor release and preventing death. J Clin Invest. 1993;91(3):1028–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa S, Goto S, Tsuji H, et al. Intestinal Dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One. 2015;10(11):e0142164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawkesworth S, Moore SE, Fulford AJ, et al. Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutr Diabetes. 2013;3(8):e83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrikx T, Schnabl B. Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J Intern Med. 2019;286(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YJ, Wang YD, Tan FQ, Yang WX. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep. 2013;40(11):6123–42.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim A, Mbodji K, Hassan A, et al. Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin Nutr. 2011;30(5):678–87.

    Article  CAS  PubMed  Google Scholar 

  • Jayashree B, Bibin YS, Prabhu D, et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem. 2014;388(1–2):203–10.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.

    Article  CAS  PubMed  Google Scholar 

  • Kim KE, Cho YS, Baek KS, et al. Lipopolysaccharide-binding protein plasma levels as a biomarker of obesity-related insulin resistance in adolescents. Korean J Pediatr. 2016;59(5):231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Tani T, Yokota T, Kodama M. Detection of peptidoglycan in human plasma using the silkworm larvae plasma test. FEMS Immunol Med Microbiol. 2000;28(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  • Krogh-Madsen R, Plomgaard P, Akerstrom T, Møller K, Schmitz O, Pedersen BK. Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab. 2008;294(2):E371–9.

    Article  CAS  PubMed  Google Scholar 

  • Lallès JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev. 2014;72(2):82–94.

    Article  PubMed  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassenius MI, Pietiläinen KH, Kaartinen K, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34(8):1809–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang E, Yin B, et al. Effects of lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes. 2017;8(3):421–32.

    Article  CAS  PubMed  Google Scholar 

  • Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  • Malo MS, Moaven O, Muhammad N, et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol. 2014;306(10):G826–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massier L, Chakaroun R, Tabei S, et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut. 2020;69(10):1796–806.

    Article  CAS  PubMed  Google Scholar 

  • Massier L, Blüher M, Kovacs P, Chakaroun RM. Impaired intestinal barrier and tissue bacteria: pathomechanisms for metabolic diseases. Front Endocrinol (Lausanne). 2021;12:616506.

    Article  Google Scholar 

  • Matheus VA, Monteiro L, Oliveira RB, et al. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Exp Biol Med (Maywood). 2017;242(12):1214–26.

    Article  CAS  Google Scholar 

  • McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142(1):24–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestecky J, Russell MW, Elson CO. Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut. 1999;44(1):2–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery. 2012;151(4):587–93.

    Article  PubMed  Google Scholar 

  • Moreno-Navarrete JM, Ortega F, Serino M, et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes. 2012;36(11):1442–9.

    Article  CAS  Google Scholar 

  • Munukka E, Wiklund P, Partanen T, et al. Adipocytes as a link between gut microbiota-derived Flagellin and hepatocyte fat accumulation. PLoS One. 2016;11(4):e0152786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogawa H, Rafiee P, Fisher PJ, et al. Butyrate modulates gene and protein expression in human intestinal endothelial cells. Biochem Biophys Res Commun. 2003;309(3):512–9.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz S, Zapater P, Estrada JL, et al. Bacterial DNA translocation holds increased insulin resistance and systemic inflammatory levels in morbid obese patients. J Clin Endocrinol Metab. 2014;99(7):2575–83.

    Article  CAS  PubMed  Google Scholar 

  • Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care. 2011;34(2):392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Kanazawa A, Ikeda F, et al. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes. Diabetes Care. 2014;37(8):2343–50.

    Article  CAS  PubMed  Google Scholar 

  • Schumann RR. Old and new findings on lipopolysaccharide-binding protein: a soluble pattern-recognition molecule. Biochem Soc Trans. 2011;39(4):989–93.

    Article  CAS  PubMed  Google Scholar 

  • Sohail MU, Althani A, Anwar H, Rizzi R, Marei HE. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res. 2017;2017:9631435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sohet FM, Neyrinck AM, Pachikian BD, et al. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009;78(11):1391–400.

    Article  CAS  PubMed  Google Scholar 

  • Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376–83.

    Article  CAS  PubMed  Google Scholar 

  • Tilves CM, Zmuda JM, Kuipers AL, et al. Association of Lipopolysaccharide-Binding Protein with Aging-Related Adiposity Change and Prediabetes among African Ancestry men. Diabetes Care. 2016;39(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  • Topchiy E, Cirstea M, Kong HJ, et al. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor. PLoS One. 2016;11(5):e0155030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trøseid M, Nestvold TK, Rudi K, Thoresen H, Nielsen EW, Lappegård KT. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care. 2013;36(11):3627–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White RH, Frayn KN, Little RA, Threlfall CJ, Stoner HB, Irving MH. Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique. JPEN J Parenter Enteral Nutr. 1987;11(4):345–53.

    Article  CAS  PubMed  Google Scholar 

  • Wirthgen E, Hoeflich A. Endotoxin-induced tryptophan degradation along the kynurenine pathway: the role of Indolamine 2,3-dioxygenase and aryl hydrocarbon receptor-mediated immunosuppressive effects in endotoxin tolerance and cancer and its implications for Immunoparalysis. J Amino Acids. 2015;2015:973548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021;117:154712.

    Article  CAS  PubMed  Google Scholar 

  • Zaman GS, Zaman F. Relationship between postprandial endotoxemia in nonobese postmenopausal women and diabetic nonobese postmenopausal women. J Nat Sci Biol Med. 2015;6(1):89–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zinöcker MK, Lindseth IA. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10(3):365.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Ahmed Meheissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meheissen, M.A. (2022). Markers of Bacterial Translocation in Type 2 Diabetes Mellitus. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Diabetes. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81303-1_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81303-1_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81303-1

  • Online ISBN: 978-3-030-81303-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics