Skip to main content

Advertisement

Log in

Regulation of paracellular permeability: factors and mechanisms

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Epithelial permeability is composed of transcellular permeability and paracellular permeability. Paracellular permeability is controlled by tight junctions (TJs). Claudins and occludin are two major transmembrane proteins in TJs, which directly determine the paracellular permeability to different ions or large molecules. Intracellular signaling pathways including Rho/Rho-associated protein kinase, protein kinase Cs, and mitogen-activated protein kinase, modulate the TJ proteins to affect paracellular permeability in response for diverse stimuli. Cytokines, growth factors and hormones in organism can regulate the paracellular permeability via signaling pathway. The transcellular transporters such as Na-K-ATPase, Na+-coupled transporters and chloride channels, can interact with paracellular transport and regulate the TJs. In this review, we summarized the factors affecting paracellular permeability and new progressions of the related mechanism in recent studies, and pointed out further research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BBB:

Blood brain barrier

BTB:

Blood testis barrier

CFTR:

Cystic fibrosis transmembrane conductance regulator

ECL:

Extracellular loops

EGF:

Epidermal growth factor

ERK:

Extracellular signal-related kinases

GAPs:

GTPase activating proteins

GEFs:

Guanine nucleotide exchange factors

GUK:

Guanylate kinase

JAM:

Junctional adhesion molecule

JNK:

c-Jun amino-terminal kinases

MAGUK:

Membrane-associated guanylate kinases

MARVEL:

MAL and related proteins for vesicle trafficking and membrane link

MAPK:

Mitogen-activated protein kinase

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

NHE:

Sodium–hydrogen exchanger

PDGF:

Platelet-derived growth factor

PKCs:

Protein kinase Cs

ROCK:

Rho/Rho-associated protein kinase

SGLT:

Sodium–glucose transporters

TER:

Transepithelial electrical resistance

TGF:

Transforming growth factor

TJs:

Tight junctions

VEGF:

Vascular endothelial growth factor

ZO:

Zonula occludens

References

  1. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    PubMed  CAS  Google Scholar 

  2. Cummins PM (2012) Occludin: one protein, many forms. Mol Cell Biol 32(2):242–250

    PubMed  CAS  Google Scholar 

  3. Fujibe M (2004) Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp Cell Res 295(1):36–47

    PubMed  CAS  Google Scholar 

  4. Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36(7):1206–1237

    PubMed  CAS  Google Scholar 

  5. Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4(3):225–236

    PubMed  CAS  Google Scholar 

  6. Terry S (2010) Rho signaling and tight junction functions. Physiology 25(1):16–26

    PubMed  CAS  Google Scholar 

  7. Balda MS, Matter K (2009) Tight junctions and the regulation of gene expression. Biochim Biophys Acta 1788(4):761–767

    PubMed  CAS  Google Scholar 

  8. Farkas AE, Capaldo CT, Nusrat A (2012) Regulation of epithelial proliferation by tight junction proteins. Ann NY Acad Sci 1258(1):115–124

    PubMed  CAS  Google Scholar 

  9. Ikenouchi J (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171(6):939–945

    PubMed  CAS  Google Scholar 

  10. Krug SM (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20(16):3713–3724

    PubMed  CAS  Google Scholar 

  11. Mariano C (2011) A look at tricellulin and its role in tight junction formation and maintenance. Eur J Cell Biol 90(10):787–796

    PubMed  CAS  Google Scholar 

  12. Guillemot L (2008) The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. Biochim Biophys Acta 1778(3):601–613

    PubMed  CAS  Google Scholar 

  13. Bauer H (2010) The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010:402593

    PubMed  CAS  Google Scholar 

  14. Kapus A, Szaszi K (2006) Coupling between apical and paracellular transport processes. Biochem Cell Biol 84(6):870–880

    PubMed  CAS  Google Scholar 

  15. Buchert M, Turksen K, Hollande F (2011) Methods to examine tight junction physiology in cancer stem cells: TEER, paracellular permeability, and dilution potential measurements. Stem Cell Rev 8(3):1030–1034

    Google Scholar 

  16. Shen L (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309

    PubMed  CAS  Google Scholar 

  17. Rajasekaran SA, Beyenbach KW, Rajasekaran AK (2008) Interactions of tight junctions with membrane channels and transporters. Biochim Biophys Acta 1778(3):757–769

    PubMed  CAS  Google Scholar 

  18. Furuse M (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141(7):1539–1550

    PubMed  CAS  Google Scholar 

  19. Mineta K (2011) Predicted expansion of the claudin multigene family. FEBS Lett 585(4):606–612

    PubMed  CAS  Google Scholar 

  20. Lal-Nag M, Morin PJ (2009) The claudins. Genome Biol 10(8):235

    PubMed  Google Scholar 

  21. Findley MK, Koval M (2009) Regulation and roles for claudin-family tight junction proteins. IUBMB Life 61(4):431–437

    PubMed  CAS  Google Scholar 

  22. Sjo A, Magnusson KE, Peterson KH (2010) Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. J Membr Biol 236(2):181–189

    PubMed  Google Scholar 

  23. Leach L (2002) Vasculogenesis, angiogenesis and the molecular organisation of endothelial junctions in the early human placenta. J Vasc Res 39(3):246–259

    PubMed  CAS  Google Scholar 

  24. Lievano S (2006) Endothelia of term human placentae display diminished expression of tight junction proteins during preeclampsia. Cell Tissue Res 324(3):433–448

    PubMed  CAS  Google Scholar 

  25. Kirk A (2010) Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 25(7):2107–2119

    PubMed  CAS  Google Scholar 

  26. Furuse M (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156(6):1099–1111

    PubMed  CAS  Google Scholar 

  27. Nitta T (2003) Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660

    PubMed  CAS  Google Scholar 

  28. Furuse M (2010) Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2(1):a002907

    PubMed  Google Scholar 

  29. Krause G (2008) Structure and function of claudins. Biochim Biophys Acta 1778(3):631–645

    PubMed  CAS  Google Scholar 

  30. Yu AS (2003) Claudin-8 expression in Madin–Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278(19):17350–17359

    PubMed  CAS  Google Scholar 

  31. Angelow S, Kim KJ, Yu AS (2006) Claudin-8 modulates paracellular permeability to acidic and basic ions in MDCK II cells. J Physiol 571(Pt 1):15–26

    PubMed  CAS  Google Scholar 

  32. Wray C (2009) Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am J Physiol Lung Cell Mol Physiol 297(2):L219–L227

    PubMed  CAS  Google Scholar 

  33. Nicholson MD, Lindsay LA, Murphy CR (2010) Ovarian hormones control the changing expression of claudins and occludin in rat uterine epithelial cells during early pregnancy. Acta Histochem 112(1):42–52

    PubMed  CAS  Google Scholar 

  34. Milatz S (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798(11):2048–2057

    PubMed  CAS  Google Scholar 

  35. Muto S (2010) Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA 107(17):8011–8016

    PubMed  CAS  Google Scholar 

  36. Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286(36):31263–31271

    PubMed  CAS  Google Scholar 

  37. Yu AS, Cheng MH, Coalson RD (2010) Calcium inhibits paracellular sodium conductance through claudin-2 by competitive binding. J Biol Chem 285(47):37060–37069

    PubMed  CAS  Google Scholar 

  38. Martin-Martin N (2010) Sirolimus and cyclosporine A alter barrier function in renal proximal tubular cells through stimulation of ERK1/2 signaling and claudin-1 expression. Am J Physiol Renal Physiol 298(3):F672–F682

    PubMed  CAS  Google Scholar 

  39. Rosenthal R (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123(Pt 11):1913–1921

    PubMed  CAS  Google Scholar 

  40. Simon DB (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285(5424):103–106

    PubMed  CAS  Google Scholar 

  41. Hou J (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118(2):619–628

    PubMed  CAS  Google Scholar 

  42. Hou J (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci USA 106(36):15350–15355

    PubMed  CAS  Google Scholar 

  43. Hou J (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci USA 107(42):18010–18015

    PubMed  CAS  Google Scholar 

  44. Krug SM (2012) Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci 69(16):2765–2778

    PubMed  CAS  Google Scholar 

  45. Colegio OR (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283(1):C142–C147

    PubMed  CAS  Google Scholar 

  46. Alexandre MD (2007) The first extracellular domain of claudin-7 affects paracellular Cl-permeability. Biochem Biophys Res Commun 357(1):87–91

    PubMed  CAS  Google Scholar 

  47. Van Itallie CM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291(6):F1288–F1299

    PubMed  Google Scholar 

  48. Furuse M (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788

    PubMed  CAS  Google Scholar 

  49. Feldman GJ, Mullin JM, Ryan MP (2005) Occludin: structure, function and regulation. Adv Drug Deliv Rev 57(6):883–917

    PubMed  CAS  Google Scholar 

  50. Sanchez-Pulido L (2002) MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 27(12):599–601

    PubMed  CAS  Google Scholar 

  51. Saitou M (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141(2):397–408

    PubMed  CAS  Google Scholar 

  52. Saitou M (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12):4131–4142

    PubMed  CAS  Google Scholar 

  53. Schulzke JD (2005) Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta 1669(1):34–42

    PubMed  CAS  Google Scholar 

  54. McCarthy KM (1996) Occludin is a functional component of the tight junction. J Cell Sci 109(Pt 9):2287–2298

    PubMed  CAS  Google Scholar 

  55. Yu H (2012) Recombinant human angiopoietin-1 ameliorates the expressions of ZO-1, occludin, VE-cadherin, and PKCalpha signaling after focal cerebral ischemia/reperfusion in rats. J Mol Neurosci 46(1):236–247

    PubMed  CAS  Google Scholar 

  56. Noth R (2011) Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model. BMC Gastroenterol 11:109

    PubMed  CAS  Google Scholar 

  57. Wong V, Gumbiner BM (1997) A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136(2):399–409

    PubMed  CAS  Google Scholar 

  58. Lacaz-Vieira F (1999) Small synthetic peptides homologous to segments of the first external loop of occludin impair tight junction resealing. J Membr Biol 168(3):289–297

    PubMed  CAS  Google Scholar 

  59. Balda MS (2000) Multiple domains of occludin are involved in the regulation of paracellular permeability. J Cell Biochem 78(1):85–96

    PubMed  CAS  Google Scholar 

  60. Al-Sadi R (2011) Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 300(6):G1054–G1064

    PubMed  CAS  Google Scholar 

  61. Rao R (2009) Occludin phosphorylation in regulation of epithelial tight junctions. Ann NY Acad Sci 1165:62–68

    PubMed  CAS  Google Scholar 

  62. Dorfel MJ, Huber O (2012) Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J Biomed Biotechnol 2012:807356

    PubMed  Google Scholar 

  63. Dorfel MJ, Huber O (2012) A phosphorylation hotspot within the occludin C-terminal domain. Ann NY Acad Sci 1257(1):38–44

    PubMed  Google Scholar 

  64. Gonzalez-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756

    PubMed  CAS  Google Scholar 

  65. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    PubMed  CAS  Google Scholar 

  66. Beckers CM, van Hinsbergh VW, van Nieuw AG (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103(1):40–55

    PubMed  CAS  Google Scholar 

  67. Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87(2):243–253

    PubMed  CAS  Google Scholar 

  68. Bruewer M (2004) RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am J Physiol Cell Physiol 287(2):C327–C335

    PubMed  CAS  Google Scholar 

  69. Nakagawa O (1996) ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392(2):189–193

    PubMed  CAS  Google Scholar 

  70. Yamamoto M (2008) Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol 172(2):521–533

    PubMed  CAS  Google Scholar 

  71. Ivanov AI (2004) Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 15(6):2639–2651

    PubMed  CAS  Google Scholar 

  72. Hirano K (2003) Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol Cell Biochem 248(1–2):105–114

    PubMed  CAS  Google Scholar 

  73. Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3(5):reviews3007

    PubMed  Google Scholar 

  74. Ishibashi F (2008) High glucose increases phosphocofilin via phosphorylation of LIM kinase due to Rho/Rho kinase activation in cultured pig proximal tubular epithelial cells. Diabetes Res Clin Pract 80(1):24–33

    PubMed  CAS  Google Scholar 

  75. Thirone AC (2009) Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response. Am J Physiol Cell Physiol 296(3):C463–C475

    PubMed  CAS  Google Scholar 

  76. Shen L, Turner JR (2005) Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell 16(9):3919–3936

    PubMed  CAS  Google Scholar 

  77. Wu LL (2011) Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med 39(9):2087–2098

    PubMed  CAS  Google Scholar 

  78. Ruiz-Loredo AY, Lopez E, Lopez-Colome AM (2011) Thrombin promotes actin stress fiber formation in RPE through Rho/ROCK-mediated MLC phosphorylation. J Cell Physiol 226(2):414–423

    PubMed  CAS  Google Scholar 

  79. Ma T (2012) Evidence for involvement of ROCK signaling in bradykinin-induced increase in murine blood–tumor barrier permeability. J Neurooncol 106(2):291–301

    PubMed  CAS  Google Scholar 

  80. Xie H (2012) Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood–tumor barrier: role of RhoA/ROCK signaling in EMAP II opening of the BTB. J Mol Neurosci 46(3):666–676

    PubMed  CAS  Google Scholar 

  81. Nagumo Y (2008) Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem Biophys Res Commun 377(3):921–925

    PubMed  CAS  Google Scholar 

  82. Hong F (2011) Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 510(2):135–146

    PubMed  CAS  Google Scholar 

  83. Satpathy M (2004) Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells. Exp Eye Res 79(4):477–486

    PubMed  CAS  Google Scholar 

  84. Haorah J (2005) Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood–brain barrier compromise. Alcohol Clin Exp Res 29(6):999–1009

    PubMed  CAS  Google Scholar 

  85. Srinivas SP (2006) Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells. Invest Ophthalmol Vis Sci 47(9):4011–4018

    PubMed  Google Scholar 

  86. Fedwick JP (2005) Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun 73(12):7844–7852

    PubMed  CAS  Google Scholar 

  87. Wroblewski LE (2009) Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology 136(1):236–246

    PubMed  CAS  Google Scholar 

  88. Shen L (2006) Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 119(Pt 10):2095–2106

    PubMed  CAS  Google Scholar 

  89. Benais-Pont G (2003) Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J Cell Biol 160(5):729–740

    PubMed  CAS  Google Scholar 

  90. Waheed F (2010) Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase. Am J Physiol Cell Physiol 298(6):C1376–C1387

    PubMed  CAS  Google Scholar 

  91. Birukova AA (2006) GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 290(3):L540–L548

    PubMed  CAS  Google Scholar 

  92. Birukova AA (2010) Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 298(6):L837–L848

    PubMed  CAS  Google Scholar 

  93. Xiaolu D (2011) Role of p115RhoGEF in lipopolysaccharide-induced mouse brain microvascular endothelial barrier dysfunction. Brain Res 1387:1–7

    PubMed  Google Scholar 

  94. Terry SJ (2011) Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nat Cell Biol 13(2):159–166

    PubMed  CAS  Google Scholar 

  95. Itoh M (2012) Rho GTP exchange factor ARHGEF11 regulates the integrity of epithelial junctions by connecting ZO-1 and RhoA-Myosin II signaling. Proc Natl Acad Sci USA 109(25):9905–9910

    PubMed  CAS  Google Scholar 

  96. Zeng L, Webster SV, Newton PM (2012) The biology of protein kinase C. Adv Exp Med Biol 740:639–661

    PubMed  CAS  Google Scholar 

  97. Balda MS (1993) Assembly of the tight junction: the role of diacylglycerol. J Cell Biol 123(2):293–302

    PubMed  CAS  Google Scholar 

  98. Yoo J (2003) Bryostatin-1 enhances barrier function in T84 epithelia through PKC-dependent regulation of tight junction proteins. Am J Physiol Cell Physiol 285(2):C300–C309

    PubMed  CAS  Google Scholar 

  99. Eckert JJ (2004) PKC signalling regulates tight junction membrane assembly in the pre-implantation mouse embryo. Reproduction 127(6):653–667

    PubMed  CAS  Google Scholar 

  100. Banan A (2005) theta Isoform of protein kinase C alters barrier function in intestinal epithelium through modulation of distinct claudin isotypes: a novel mechanism for regulation of permeability. J Pharmacol Exp Ther 313(3):962–982

    PubMed  CAS  Google Scholar 

  101. Andreeva AY (2001) Protein kinase C regulates the phosphorylation and cellular localization of occludin. J Biol Chem 276(42):38480–38486

    PubMed  CAS  Google Scholar 

  102. Suzuki T (2009) PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci USA 106(1):61–66

    PubMed  CAS  Google Scholar 

  103. Nishitsuji K (2011) Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood–brain barrier model. J Biol Chem 286(20):17536–17542

    PubMed  CAS  Google Scholar 

  104. Andreeva AY (2006) Assembly of tight junction is regulated by the antagonism of conventional and novel protein kinase C isoforms. Int J Biochem Cell Biol 38(2):222–233

    PubMed  CAS  Google Scholar 

  105. Suzuki A (2001) Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 152(6):1183–1196

    PubMed  CAS  Google Scholar 

  106. Helfrich I (2007) Role of aPKC isoforms and their binding partners Par3 and Par6 in epidermal barrier formation. J Invest Dermatol 127(4):782–791

    PubMed  CAS  Google Scholar 

  107. Jain S (2011) Protein kinase Czeta phosphorylates occludin and promotes assembly of epithelial tight junctions. Biochem J 437(2):289–299

    PubMed  CAS  Google Scholar 

  108. Angelow S (2005) Phorbol ester induced short- and long-term permeabilization of the blood–CSF barrier in vitro. Brain Res 1063(2):168–179

    PubMed  CAS  Google Scholar 

  109. Banan A (2002) Activation of delta-isoform of protein kinase C is required for oxidant-induced disruption of both the microtubule cytoskeleton and permeability barrier of intestinal epithelia. J Pharmacol Exp Ther 303(1):17–28

    PubMed  CAS  Google Scholar 

  110. Banan A (2005) Critical role of the atypical lambda isoform of protein kinase C (PKC-{lambda}) in oxidant-induced disruption of the microtubule cytoskeleton and barrier function of intestinal epithelium. J Pharmacol Exp Ther 312(2):458–471

    PubMed  CAS  Google Scholar 

  111. Kim JH (2010) Inhibition of protein kinase C delta attenuates blood–retinal barrier breakdown in diabetic retinopathy. Am J Pathol 176(3):1517–1524

    PubMed  CAS  Google Scholar 

  112. Kanmogne GD (2007) HIV-1 gp120 compromises blood–brain barrier integrity and enhances monocyte migration across blood–brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27(1):123–134

    PubMed  CAS  Google Scholar 

  113. Kim YA (2010) Role of PKCbetaII and PKCdelta in blood–brain barrier permeability during aglycemic hypoxia. Neurosci Lett 468(3):254–258

    PubMed  CAS  Google Scholar 

  114. Sjo A, Magnusson KE, Peterson KH (2003) Distinct effects of protein kinase C on the barrier function at different developmental stages. Biosci Rep 23(2–3):87–102

    PubMed  Google Scholar 

  115. Dhillon AS (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290

    PubMed  CAS  Google Scholar 

  116. Gehart H (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 11(11):834–840

    PubMed  CAS  Google Scholar 

  117. Yang R (2005) Bile modulates intestinal epithelial barrier function via an extracellular signal related kinase 1/2 dependent mechanism. Intensive Care Med 31(5):709–717

    PubMed  Google Scholar 

  118. Cohen TS (2010) MAPK activation modulates permeability of isolated rat alveolar epithelial cell monolayers following cyclic stretch. PLoS One 5(4):e10385

    PubMed  Google Scholar 

  119. Costantini TW (2009) Role of p38 MAPK in burn-induced intestinal barrier breakdown. J Surg Res 156(1):64–69

    PubMed  CAS  Google Scholar 

  120. Madara JL, Stafford J (1989) Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 83(2):724–727

    PubMed  CAS  Google Scholar 

  121. Youakim A, Ahdieh M (1999) Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol 276(5 Pt 1):G1279–G1288

    PubMed  CAS  Google Scholar 

  122. Tedelind S (2003) Interferon-gamma down-regulates claudin-1 and impairs the epithelial barrier function in primary cultured human thyrocytes. Eur J Endocrinol 149(3):215–221

    PubMed  CAS  Google Scholar 

  123. Bruewer M (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11):6164–6172

    PubMed  CAS  Google Scholar 

  124. Bruewer M (2005) Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19(8):923–933

    PubMed  CAS  Google Scholar 

  125. Utech M (2005) Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 16(10):5040–5052

    PubMed  CAS  Google Scholar 

  126. Boivin MA (2009) Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction. J Interferon Cytokine Res 29(1):45–54

    PubMed  CAS  Google Scholar 

  127. Prasad S (2005) Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest 85(9):1139–1162

    PubMed  CAS  Google Scholar 

  128. Cui W (2010) Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells. Braz J Med Biol Res 43(4):330–337

    PubMed  CAS  Google Scholar 

  129. Ewert P (2010) Disruption of tight junction structure in salivary glands from Sjogren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum 62(5):1280–1289

    PubMed  CAS  Google Scholar 

  130. Grant-Tschudy KS, Wira CR (2005) Paracrine mediators of mouse uterine epithelial cell transepithelial resistance in culture. J Reprod Immunol 67(1–2):1–12

    PubMed  CAS  Google Scholar 

  131. Ma TY (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286(3):G367–G376

    PubMed  CAS  Google Scholar 

  132. Aveleira CA (2010) TNF-alpha signals through PKCzeta/NF-kappaB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes 59(11):2872–2882

    PubMed  CAS  Google Scholar 

  133. Aslam M (2012) TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells. Cytokine 57(2):269–275

    PubMed  CAS  Google Scholar 

  134. Ma TY (2005) Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288(3):G422–G430

    PubMed  CAS  Google Scholar 

  135. Ye D, Ma I, Ma TY (2006) Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 290(3):G496–G504

    PubMed  CAS  Google Scholar 

  136. He F (2012) Mechanisms of tumor necrosis factor-alpha-induced leaks in intestine epithelial barrier. Cytokine 59(2):264–272

    PubMed  CAS  Google Scholar 

  137. Marchiando AM (2010) Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 189(1):111–126

    PubMed  CAS  Google Scholar 

  138. Van Itallie CM (2010) Occludin is required for cytokine-induced regulation of tight junction barriers. J Cell Sci 123(Pt 16):2844–2852

    PubMed  Google Scholar 

  139. McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213(1):221–228

    PubMed  CAS  Google Scholar 

  140. Kakiashvili E (2009) GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J Biol Chem 284(17):11454–11466

    PubMed  CAS  Google Scholar 

  141. Utech M, Mennigen R, Bruewer M (2010) Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol 2010:484987

    PubMed  Google Scholar 

  142. Wang F (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166(2):409–419

    PubMed  CAS  Google Scholar 

  143. Patrick DM (2006) Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma modulate epithelial barrier function in Madin–Darby canine kidney cells through mitogen activated protein kinase signaling. BMC Physiol 6:2

    PubMed  Google Scholar 

  144. Li Q (2008) Interferon-gamma and tumor necrosis factor-alpha disrupt epithelial barrier function by altering lipid composition in membrane microdomains of tight junction. Clin Immunol 126(1):67–80

    PubMed  CAS  Google Scholar 

  145. Baker OJ (2008) Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line. Am J Physiol Cell Physiol 295(5):C1191–C1201

    PubMed  CAS  Google Scholar 

  146. Peng S (2012) Effects of proinflammatory cytokines on the claudin-19 rich tight junctions of human retinal pigment epithelium (RPE). Invest Ophthalmol Vis Sci 53(8):5016–5028

    PubMed  CAS  Google Scholar 

  147. Wang F (2006) IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 131(4):1153–1163

    PubMed  CAS  Google Scholar 

  148. Al-Sadi RM, Ma TY (2007) IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 178(7):4641–4649

    PubMed  CAS  Google Scholar 

  149. Al-Sadi R (2008) Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. J Immunol 180(8):5653–5661

    PubMed  CAS  Google Scholar 

  150. Al-Sadi R (2010) IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol 177(5):2310–2322

    PubMed  CAS  Google Scholar 

  151. Rigor RR (2012) Interleukin-1beta-induced barrier dysfunction is signaled through PKC-theta in human brain microvascular endothelium. Am J Physiol Cell Physiol 302(10):C1513–C1522

    PubMed  CAS  Google Scholar 

  152. Desai TR (2002) Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway. J Surg Res 104(2):118–123

    PubMed  CAS  Google Scholar 

  153. Yang R (2003) IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am J Physiol Gastrointest Liver Physiol 285(3):G621–G629

    PubMed  CAS  Google Scholar 

  154. Weber CR (2010) Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem 285(16):12037–12046

    PubMed  CAS  Google Scholar 

  155. Stone KP, Kastin AJ, Pan W (2011) NFkB is an unexpected major mediator of interleukin-15 signaling in cerebral endothelia. Cell Physiol Biochem 28(1):115–124

    PubMed  CAS  Google Scholar 

  156. Huppert J (2010) Cellular mechanisms of IL-17-induced blood–brain barrier disruption. FASEB J 24(4):1023–1034

    PubMed  CAS  Google Scholar 

  157. You QH (2010) Interleukin-17F-induced pulmonary microvascular endothelial monolayer hyperpermeability via the protein kinase C pathway. J Surg Res 162(1):110–121

    PubMed  CAS  Google Scholar 

  158. Li X, Akhtar S, Choudhry MA (1822) Alteration in intestine tight junction protein phosphorylation and apoptosis is associated with increase in IL-18 levels following alcohol intoxication and burn injury. Biochim Biophys Acta 2:196–203

    Google Scholar 

  159. Grant-Tschudy KS, Wira CR (2005) Hepatocyte growth factor regulation of uterine epithelial cell transepithelial resistance and tumor necrosis factor alpha release in culture. Biol Reprod 72(4):814–821

    PubMed  CAS  Google Scholar 

  160. Date I (2006) Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood–brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci Lett 407(2):141–145

    PubMed  CAS  Google Scholar 

  161. Togawa A (2010) Hepatocyte Growth Factor stimulated cell scattering requires ERK and Cdc42-dependent tight junction disassembly. Biochem Biophys Res Commun 400(2):271–277

    PubMed  CAS  Google Scholar 

  162. Catizone A (2012) Hepatocyte growth factor (HGF) regulates blood–testis barrier (BTB) in adult rats. Mol Cell Endocrinol 348(1):135–146

    PubMed  CAS  Google Scholar 

  163. Lipschutz JH (2005) Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin–Darby canine kidney strain I and II cells. J Biol Chem 280(5):3780–3788

    PubMed  CAS  Google Scholar 

  164. Samak G, Aggarwal S, Rao RK (2011) ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 301(1):G50–G59

    PubMed  CAS  Google Scholar 

  165. Ikari A (2011) Epidermal growth factor increases clathrin-dependent endocytosis and degradation of claudin-2 protein in MDCK II cells. J Cell Physiol 226(9):2448–2456

    PubMed  CAS  Google Scholar 

  166. Yoshida K (2005) EGF rapidly translocates tight junction proteins from the cytoplasm to the cell–cell contact via protein kinase C activation in TMK-1 gastric cancer cells. Exp Cell Res 309(2):397–409

    PubMed  CAS  Google Scholar 

  167. Harhaj NS, Barber AJ, Antonetti DA (2002) Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. J Cell Physiol 193(3):349–364

    PubMed  CAS  Google Scholar 

  168. Wen H (2011) Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability. PLoS One 6(6):e21707

    PubMed  CAS  Google Scholar 

  169. Yao H, Duan M, Buch S (2011) Cocaine-mediated induction of platelet-derived growth factor: implication for increased vascular permeability. Blood 117(8):2538–2547

    PubMed  CAS  Google Scholar 

  170. Harhaj NS (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47(11):5106–5115

    PubMed  Google Scholar 

  171. Murakami T, Felinski EA, Antonetti DA (2009) Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem 284(31):21036–21046

    PubMed  CAS  Google Scholar 

  172. Goumans MJ, Liu Z, Ten DP (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19(1):116–127

    PubMed  CAS  Google Scholar 

  173. Drabsch Y, Ten DP (2011) TGF-beta signaling in breast cancer cell invasion and bone metastasis. J Mammary Gland Biol Neoplasia 16(2):97–108

    PubMed  Google Scholar 

  174. Birukova AA (2005) Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J Cell Physiol 204(3):934–947

    PubMed  CAS  Google Scholar 

  175. Clements RT (2005) RhoA and Rho-kinase dependent and independent signals mediate TGF-beta-induced pulmonary endothelial cytoskeletal reorganization and permeability. Am J Physiol Lung Cell Mol Physiol 288(2):L294–L306

    PubMed  CAS  Google Scholar 

  176. Pierucci-Alves F, Yi S, Schultz BD (2012) Transforming growth factor Beta 1 induces tight junction disruptions and loss of transepithelial resistance across porcine vas deferens epithelial cells. Biol Reprod 86(2):36

    PubMed  Google Scholar 

  177. Feldman G (2007) Role for TGF-beta in cyclosporine-induced modulation of renal epithelial barrier function. J Am Soc Nephrol 18(6):1662–1671

    PubMed  CAS  Google Scholar 

  178. Howe KL (2005) Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7-induced increased permeability. Am J Pathol 167(6):1587–1597

    PubMed  CAS  Google Scholar 

  179. Lu Q (2006) Transforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. J Appl Physiol 101(2):375–384

    PubMed  CAS  Google Scholar 

  180. Xia W (2009) TGF-beta3 and TNFalpha perturb blood–testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev Biol 327(1):48–61

    PubMed  CAS  Google Scholar 

  181. Ye P (2012) Modulation of epithelial tight junctions by TGF-beta 3 in cultured oral epithelial cells. Aust Dent J 57(1):11–17

    PubMed  CAS  Google Scholar 

  182. Le Moellic C (2005) Aldosterone and tight junctions: modulation of claudin-4 phosphorylation in renal collecting duct cells. Am J Physiol Cell Physiol 289(6):C1513–C1521

    PubMed  Google Scholar 

  183. Forster C (2006) Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. J Physiol 573(Pt 2):413–425

    PubMed  Google Scholar 

  184. Forster C (2008) Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol 586(7):1937–1949

    PubMed  Google Scholar 

  185. Kobayashi K (2010) Expression and distribution of tight junction proteins in human amnion during late pregnancy. Placenta 31(2):158–162

    PubMed  CAS  Google Scholar 

  186. Sadowska GB, Malaeb SN, Stonestreet BS (2010) Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol 298(1):H179–H188

    PubMed  CAS  Google Scholar 

  187. Forster C (2005) Occludin as direct target for glucocorticoid-induced improvement of blood–brain barrier properties in a murine in vitro system. J Physiol 565(Pt 2):475–486

    PubMed  Google Scholar 

  188. Harke N (2008) Glucocorticoids regulate the human occludin gene through a single imperfect palindromic glucocorticoid response element. Mol Cell Endocrinol 295(1–2):39–47

    PubMed  CAS  Google Scholar 

  189. Felinski EA (2008) Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element. Exp Eye Res 86(6):867–878

    PubMed  CAS  Google Scholar 

  190. Kashiwamura Y (2011) Hydrocortisone enhances the function of the blood–nerve barrier through the up-regulation of claudin-5. Neurochem Res 36(5):849–855

    PubMed  CAS  Google Scholar 

  191. Boivin MA (2007) Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol 292(2):G590–G598

    PubMed  CAS  Google Scholar 

  192. Sekiyama A (2012) Glucocorticoids enhance airway epithelial barrier integrity. Int Immunopharmacol 12(2):350–357

    PubMed  CAS  Google Scholar 

  193. Meng J (2005) Androgens regulate the permeability of the blood–testis barrier. Proc Natl Acad Sci USA 102(46):16696–16700

    PubMed  CAS  Google Scholar 

  194. Su L (2010) Differential effects of testosterone and TGF-beta3 on endocytic vesicle-mediated protein trafficking events at the blood–testis barrier. Exp Cell Res 316(17):2945–2960

    PubMed  CAS  Google Scholar 

  195. Mendoza-Rodriguez CA, Gonzalez-Mariscal L, Cerbon M (2005) Changes in the distribution of ZO-1, occludin, and claudins in the rat uterine epithelium during the estrous cycle. Cell Tissue Res 319(2):315–330

    PubMed  CAS  Google Scholar 

  196. Buck VU (2012) Redistribution of adhering junctions in human endometrial epithelial cells during the implantation window of the menstrual cycle. Histochem Cell Biol 137(6):777–790

    PubMed  CAS  Google Scholar 

  197. Satterfield MC (2007) Tight and adherens junctions in the ovine uterus: differential regulation by pregnancy and progesterone. Endocrinology 148(8):3922–3931

    PubMed  CAS  Google Scholar 

  198. Kobayashi K, Miwa H, Yasui M (2011) Progesterone maintains amniotic tight junctions during midpregnancy in mice. Mol Cell Endocrinol 337(1–2):36–42

    PubMed  CAS  Google Scholar 

  199. Kaplan JH (2002) Biochemistry of Na,K-ATPase. Annu Rev Biochem 71:511–535

    PubMed  CAS  Google Scholar 

  200. Geering K (2008) Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens 17(5):526–532

    PubMed  CAS  Google Scholar 

  201. Giannatselis H, Calder M, Watson AJ (2011) Ouabain stimulates a Na+/K+-ATPase-mediated SFK-activated signalling pathway that regulates tight junction function in the mouse blastocyst. PLoS One 6(8):e23704

    PubMed  CAS  Google Scholar 

  202. Larre I (2010) Ouabain modulates epithelial cell tight junction. Proc Natl Acad Sci USA 107(25):11387–11392

    PubMed  CAS  Google Scholar 

  203. Larre I, Cereijido M (2010) Na,K-ATPase is the putative membrane receptor of hormone ouabain. Commun Integr Biol 3(6):625–628

    PubMed  Google Scholar 

  204. Violette MI, Madan P, Watson AJ (2006) Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development. Dev Biol 289(2):406–419

    PubMed  CAS  Google Scholar 

  205. Yan Y (2012) Ouabain-stimulated trafficking regulation of the Na/K-ATPase and NHE3 in renal proximal tubule cells. Mol Cell Biochem 367(1–2):175–183

    PubMed  CAS  Google Scholar 

  206. Holthouser KA (2010) Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am J Physiol Renal Physiol 299(1):F77–F90

    PubMed  CAS  Google Scholar 

  207. Haas M (2002) Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem 277(21):18694–18702

    PubMed  CAS  Google Scholar 

  208. Yuan Z (2005) Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell 16(9):4034–4045

    PubMed  CAS  Google Scholar 

  209. Lecuona E (2006) Na,K-ATPase alpha1-subunit dephosphorylation by protein phosphatase 2A is necessary for its recruitment to the plasma membrane. FASEB J 20(14):2618–2620

    PubMed  CAS  Google Scholar 

  210. Rajasekaran SA (2007) Na-K-ATPase regulates tight junction permeability through occludin phosphorylation in pancreatic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292(1):G124–G133

    PubMed  CAS  Google Scholar 

  211. Yang Y (2011) Na+/K+-ATPase alpha1 identified as an abundant protein in the blood–labyrinth barrier that plays an essential role in the barrier integrity. PLoS One 6(1):e16547

    PubMed  CAS  Google Scholar 

  212. Barwe SP (2005) Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol Biol Cell 16(3):1082–1094

    PubMed  CAS  Google Scholar 

  213. Madan P, Rose K, Watson AJ (2007) Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins. J Biol Chem 282(16):12127–12134

    PubMed  CAS  Google Scholar 

  214. Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794

    PubMed  CAS  Google Scholar 

  215. Avkiran M (2003) Basic biology and pharmacology of the cardiac sarcolemmal sodium/hydrogen exchanger. J Card Surg 18(Suppl 1):3–12

    PubMed  Google Scholar 

  216. De Vito P (2006) The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol 240(2):69–85

    PubMed  Google Scholar 

  217. Turner JR (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 273(4 Pt 1):C1378–C1385

    PubMed  CAS  Google Scholar 

  218. Turner JR (2000) Noninvasive in vivo analysis of human small intestinal paracellular absorption: regulation by Na+–glucose cotransport. Dig Dis Sci 45(11):2122–2126

    PubMed  CAS  Google Scholar 

  219. Berglund JJ (2001) Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)–glucose cotransport. Am J Physiol Gastrointest Liver Physiol 281(6):G1487–G1493

    PubMed  CAS  Google Scholar 

  220. Clayburgh DR (2004) A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem 279(53):55506–55513

    PubMed  CAS  Google Scholar 

  221. Turner JR (2000) Transepithelial resistance can be regulated by the intestinal brush-border Na(+)/H(+) exchanger NHE3. Am J Physiol Cell Physiol 279(6):C1918–C1924

    PubMed  CAS  Google Scholar 

  222. Hu Z (2006) MAPKAPK-2 is a critical signaling intermediate in NHE3 activation following Na+–glucose cotransport. J Biol Chem 281(34):24247–24253

    PubMed  CAS  Google Scholar 

  223. Turner JR, Black ED (2001) NHE3-dependent cytoplasmic alkalinization is triggered by Na(+)-glucose cotransport in intestinal epithelia. Am J Physiol Cell Physiol 281(5):C1533–C1541

    PubMed  CAS  Google Scholar 

  224. Zhao H (2004) Ezrin regulates NHE3 translocation and activation after Na+–glucose cotransport. Proc Natl Acad Sci USA 101(25):9485–9490

    PubMed  CAS  Google Scholar 

  225. Shiue H (2005) Akt2 phosphorylates ezrin to trigger NHE3 translocation and activation. J Biol Chem 280(2):1688–1695

    PubMed  CAS  Google Scholar 

  226. Park SL (2010) The effect of Na(+)/H(+) exchanger-1 inhibition by sabiporide on blood–brain barrier dysfunction after ischemia/hypoxia in vivo and in vitro. Brain Res 1366:189–196

    PubMed  CAS  Google Scholar 

  227. Brown RC, Davis TP (2002) Calcium modulation of adherens and tight junction function: a potential mechanism for blood–brain barrier disruption after stroke. Stroke 33(6):1706–1711

    PubMed  CAS  Google Scholar 

  228. Moeser AJ (2006) Prostaglandin-mediated inhibition of Na+/H+ exchanger isoform 2 stimulates recovery of barrier function in ischemia-injured intestine. Am J Physiol Gastrointest Liver Physiol 291(5):G885–G894

    PubMed  CAS  Google Scholar 

  229. Moeser AJ (2008) Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 295(4):G791–G797

    PubMed  CAS  Google Scholar 

  230. Jentsch TJ (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568

    PubMed  CAS  Google Scholar 

  231. LeSimple P (2010) Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. J Physiol 588(Pt 8):1195–1209

    PubMed  CAS  Google Scholar 

  232. Nilsson HE (2010) CFTR and tight junctions in cultured bronchial epithelial cells. Exp Mol Pathol 88(1):118–127

    PubMed  CAS  Google Scholar 

  233. Weiser N (2011) Paracellular permeability of bronchial epithelium is controlled by CFTR. Cell Physiol Biochem 28(2):289–296

    PubMed  CAS  Google Scholar 

  234. Moeser AJ (2007) Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol 292(2):G647–G656

    PubMed  CAS  Google Scholar 

  235. Nighot PK, Blikslager AT (2010) ClC-2 regulates mucosal barrier function associated with structural changes to the villus and epithelial tight junction. Am J Physiol Gastrointest Liver Physiol 299(2):G449–G456

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to all members of the Sperm Laboratory at Zhejiang University for their enlightening discussion. This project was supported in part by Zhejiang Provincial Natural Science Foundation of China (Grant No. Y2080362), the National Natural Science Foundation of China (Nos. 81100393 and 41276151), and Zhejiang Provincial Natural Science Foundation of China (Grant No. Y2100296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Additional information

Yan-Jun Hu and Yi-Dong Wang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YJ., Wang, YD., Tan, FQ. et al. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 40, 6123–6142 (2013). https://doi.org/10.1007/s11033-013-2724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2724-y

Keywords

Navigation