Skip to main content

PEM Fuel Cells: Modeling

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Proton exchange membrane fuel cells (PEMFCs):

are energy conversion devices that transform chemical energy in a fuel directly to electricity by means of two electrochemical reactions divided by a proton conductive membrane.

Mathematical modeling:

is the development of partial differential equations for describing the physical and electrochemical processes that govern a physicochemical system, in this entry, a PEMFC.

Numerical modeling:

is the development of numerical analysis and software tools to solve the partial differential equations that describe a physicochemical system, in this entry, a PEMFC.

Gas diffusion layers (GDL):

are porous, electrically conductive layers made of carbon fibers, a binder, and usually coated with PTFE that are placed between a fuel cell gas channel and the catalyst layer.

Catalyst layers (CLs):

are porous, electronically and ionically conductive composite layers made of ionomer and supported catalysts. They are the heart of the fuel cell as it is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( {\overline{C}}_p \) :

Molar specific heat, [J mol−1K−1]

\( \overline{H} \) :

Enthalpy, [J]

\( \dot{W} \) :

Rate of work done by the system, [W cm−3]

g :

Gravity vector field, [cm s−2]]

\( {\widehat{C}}_p \) :

Specific heat, [J g−1K−1]

\( \widehat{h} \) :

Specific enthalpy, [J g−1]

\( \widehat{u} \) :

Specific internal energy, [J g−1]

\( \widehat{\boldsymbol{N}} \) :

Mass flux, [g cm−2s−1]

\( \mathcal{D} \) :

Maxwell-Stefan diffusion coefficient, [ cm2s−1]

N :

Molar flux, [mol cm−2s−1]

q :

Molecular heat flux, [W cm−2K−1]

n :

Outward normal vector

\( \widehat{\boldsymbol{K}} \) :

Permeability tensor, [cm2]

v :

Velocity, [cm s−1]

A v :

Active area of Pt per unit volume of catalyst layer, [cm2cm−3]

a w :

Water activity

a lv :

Liquid-gas interfacial surface area per unit volume, [cm2cm−3]

c :

Molar concentration, [mol cm−3]

C k :

Volume fraction of fluid k

D :

Fick’s diffusion coefficient, [cm2s−1]

D K :

Knudsen diffusion coefficient, [cm2s−1]

D T :

Thermo-osmotic diffusion coefficient, [mol cm−1s−1K−1]

E :

Half-cell voltage, [V]

EW :

Equivalent weight of the ionomer, [g mol−1]

F :

Faraday’s constant, [C mol−1]

h :

Convective heat transfer coefficient, [W cm−2K−1]

H g,  N :

Henry’s constant, [Pa cm3mol−1]

i :

Volumetric current density, [A cm−3]

j :

Current density, [A cm−2]

\( {j}_0^{ref} \) :

Exchange current density, [A cm−2]

k :

Equilibrium rate constant, [cm s−1 (cm3mol−1)(α − 1)]

k e/ c :

Evaporation or condensation rate per unit of liquid-gas interfacial surface area, [mol cm−2s−1]

K i,  j :

Frictional interaction coefficient between species i and j,  [N s cm−4]

k r :

Effective permeability, [cm2]

L :

Characteristic length, [cm]

M :

Molar mass, [g mol−1]

n d :

Electroosmotic drag coefficient

p :

Pressure, [g cm−1s−2]

R :

Universal gas constant, [J mol−1K−1]

r p :

Pore radius, [cm]

S heat :

Volumetric heat source, [W cm−3]

T :

Absolute temperature, [K]

t :

Time, [s]

u i,  k :

Mobility of species i in phase k,  [cm2mol J−1s−1]

x :

Molar fraction

z i :

Valence (or charge number) of species i

BPP:

Bipolar plate

CL:

Catalyst layer

CSF:

Continuum surface force

CSS:

Continuum surface stress

ECSA:

Electrochemically active surface area

FEP:

Fluorinated ethylene propylene

GDL:

Gas diffusion layer

ICCP:

Ionomer covered catalyst particle

LS:

Level set

MEA:

Membrane electrode assembly

MPL:

Microporous layer

PEM:

Proton exchange membrane

PEMFC:

Proton exchange membrane fuel cell

PFSA:

Perfluorosulfonic acid

PLIC:

Piecewise linear interface calculation

PTFE:

Polytetrafluoroethylene

VOF:

Volume of fluid

α i :

Transfer coefficient for reaction i

\( \overline{\kappa} \) :

Partial viscosity, [g cm−1s−1]

\( \overline{\nu} \) :

Specific volume, [cm3g−1]

β :

Transfer coefficient for cathodic reaction

\( \widehat{\boldsymbol{\tau}} \) :

Cauchy stress tensor, [g cm−1s−2]

Λ :

Collision diameter, [cm]

\( \widehat{\kappa} \) :

Surface curvature, [cm−1]

η :

Overpotential, [V]

\( \widehat{\boldsymbol{\beta}} \) :

Forchheimer correction tensor, [cm]

γ :

Surface tension coefficient, [g s−2]

γ i :

Order of reaction for reaction i

γ ads :

Potential range constant for adsorption isotherm

\( {\widehat{\mu}}_i \) :

Electrochemical potential of species i,  [J mol−1]

\( \widehat{\rho} \) :

Charge density, [C cm−3]

κ :

Thermal conductivity coefficient, [W cm−2K−1]

λ :

Sorbed water content in the membrane

λ b :

Bulk viscosity, [g cm−1s−1]

λ eq :

Equilibrium sorbed water content in the membrane

μ :

Dynamic viscosity, [g cm−1s−1]

ν :

Rate of reaction, [mol cm−2s−1]

ω :

Mass fraction

ϕ k :

Electrostatic potential of phase k,  [V]

ψ :

Fraction of active platinum sites available

ρ :

Density, [g cm−3]

τ :

Shear stress tensor, [g cm−1s−2]

σ :

Conductivity, [S cm−1]

τ :

Tortuosity

θ :

Coverage of intermediate reaction species

ε :

Volume fraction

∇:

Gradient

s:

Symmetric gradient

⊗:

Tensor product

Θ(x):

Heaviside step function

DA :

Dissociative adsorption reaction

g :

Gas mixture

H :

Heyrovsky reaction

i,  j:

Species indexes

k :

Phase index

m :

Electrolyte phase

p :

Percolation threshold

RA :

Reductive adsorption reaction

RD :

Reductive desorption reaction

RT :

Reductive transition reaction

s :

Solid phase

T :

Tafel reaction

V :

Volmer reaction

v :

Void phase

Bibliography

Primary Literature

  1. Springer T, Zawodzinski T, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2342

    Article  Google Scholar 

  2. Bernardi DM, Verbrugge MW (1992) Mathematical model of the solid-polymer-electrolyte fuel cell. J Electrochem Soc 139(9):2477–2491

    Article  Google Scholar 

  3. Shimpalee S, Dutta S, Van Zee J (2000) Numerical prediction of local temperature and current density in a PEM fuel cell. ASME Publ HTD 366:1–10

    Google Scholar 

  4. Dutta S, Shimpalee S, Van Zee J (2001) Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. Int J Heat Mass Transf 44(11):2029–2042

    Article  MATH  Google Scholar 

  5. Berning T, Lu D, Djilali N (2002) Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J Power Sources 106(1–2):284–294

    Article  Google Scholar 

  6. Secanell M, Putz A, Wardlaw P, Zingan V, Bhaiya M, Moore M, Zhou J, Balen C, Domican K (2014) Open-FCST: an open-source mathematical modelling software for polymer electrolyte fuel cells. ECS Trans 64(3):655–680

    Article  Google Scholar 

  7. Wang G, Mukherjee PP, Wang CY (2006) Direct numerical simulation (DNS) modeling of PEFC electrodes Part II. Random microstructure. Electrochim Acta 51:3151–3160

    Article  Google Scholar 

  8. Wang JX, Springer TE, Adzic RR (2006) Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes. J Electrochem Soc 153(9):A1732–A1740

    Article  Google Scholar 

  9. Wang G, Mukherjee PP, Wang CY (2007) Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling. Electrochim Acta 52(22):6367–6377

    Article  Google Scholar 

  10. Mukherjee P, Wang CY (2006) Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. J Electrochem Soc 153(5):A840–A849

    Article  Google Scholar 

  11. Mukherjee PP, Wang CY (2007) Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells. J Electrochem Soc 154(11):B1121–B1131

    Article  Google Scholar 

  12. Siddique N, Liu F (2010) Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer. Electrochim Acta 55(19):5357–5366

    Article  Google Scholar 

  13. Lange KJ, Sui PC, Djilali N (2010) Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers. J Electrochem Soc 157(10):B1434–B1442

    Article  Google Scholar 

  14. Lange KJ, Sui PC, Djilali N (2012) Determination of effective transport properties in a PEMFC catalyst layer using different reconstruction algorithms. J Power Sources 208:354–365

    Article  Google Scholar 

  15. Chen L, Wu G, Holby EF, Zelenay P, Tao WQ, Kang Q (2015) Lattice Boltzmann pore-scale investigation of coupled physical-electrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 158:175–186

    Article  Google Scholar 

  16. Zhang X, Ostadi H, Jiang K, Chen R (2014) Reliability of the spherical agglomerate models for catalyst layer in polymer electrolyte membrane fuel cells. Electrochim Acta 133:475–483

    Article  Google Scholar 

  17. Zhang X, Gao Y, Ostadi H, Jiang K, Chen R (2015) Method to improve catalyst layer model for modelling proton exchange membrane fuel cell. J Power Sources 289:114–128

    Article  Google Scholar 

  18. Sabharwal M, Pant L, Putz A, Susac D, Jankovic J, Secanell M (2016) Analysis of catalyst layer microstructures: from imaging to performance. Fuel Cells 16(6):734–753

    Article  Google Scholar 

  19. Konno N, Mizuno S, Nakaji H, Ishikawa Y (2015) Development of compact and high-performance fuel cell stack. SAE Int J Altern Powertrains 4(1):123–129

    Article  Google Scholar 

  20. Kongkanand A, Mathias M (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7(7):1127–1137. 42

    Article  Google Scholar 

  21. Borup R, Meyers J, Pivovar B, Kim Y, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951

    Article  Google Scholar 

  22. Maranzana G, Lamibrac A, Dillet J, Lottin O (2015) Startup (and shutdown) model for polymer electrolyte membrane fuel cells. J Electrochem Soc 162(7):F694–F706

    Article  Google Scholar 

  23. Sethuraman VA, Weidner JW, Motupally S, Protsailo LV (2008) Hydrogen peroxide formation rates in PEMFC anode and cathode. J Electrochem Soc 155(1):B50–B57

    Article  Google Scholar 

  24. Secanell M, Wishart J, Dobson P (2011) Computational design and optimization of fuel cells and fuel cell systems: a review. J Power Sources 196(8):3690–3704

    Article  Google Scholar 

  25. Martins J, Lambe A (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51(9):2049–2075

    Article  Google Scholar 

  26. Carnes B, Djilali N (2005) Systematic parameter estimation for PEM fuel cell models. J Power Sources 144(1):83–93

    Article  Google Scholar 

  27. Moore M, Putz A, Secanell M (2013) Investigation of the ORR using the double-trap intrinsic kinetic model. J Electrochem Soc 160(6):F670–F681

    Article  Google Scholar 

  28. Novitski D, Kosakian A, Weissbach T, Secanell M, Holdcroft S (2016) Electrochemical reduction of dissolved oxygen in alkaline, solid polymer electrolyte films. J Am Chem Soc 138(47):15465–15472

    Article  Google Scholar 

  29. Litster S, Epting WK, A. Wargo E, Kalidindi SR, Kumbur EC (2013) Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging. Fuel Cells 13(5):935–945

    Google Scholar 

  30. Kulikovsky A, Divisek J, Kornyshev A (1999) Modeling the cathode compartment of polymer electrolyte fuel cells: dead and active reaction zones. J Electrochem Soc 146(11):3981–3991

    Article  Google Scholar 

  31. Nguyen T, White R (1993) A water and heat management model for proton-exchange-membrane fuel cells. J Electrochem Soc 140(8):2178–2186

    Article  Google Scholar 

  32. Gurau V, Liu H, Kakac S (1998) Two-dimensional model for proton exchange membrane fuel cells. AICHE J 44(11):2410–2422

    Article  Google Scholar 

  33. Weber AZ, Borup RL, Darling RM, Das PK, Dursch TJ, Gu W, Harvey D, Kusoglu A, Litster S, Mench MM, Mukundan R, Owejan JP, Pharoah JG, Secanell M, Zenyuk IV (2014) A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc 161(12):F1254–F1299

    Article  Google Scholar 

  34. Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104(10):4679–4726

    Article  Google Scholar 

  35. Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727–4766

    Article  Google Scholar 

  36. Haraldsson K, Wipke K (2004) Evaluating PEM fuel cell system models. J Power Sources 126:88–97

    Article  Google Scholar 

  37. Biyikoĝlu A (2005) Review of proton exchange membrane fuel cell models. Int J Hydrog Energy 30:1181–1212

    Article  Google Scholar 

  38. Cheddie D, Munroe N (2005) Review and comparison of approaches to proton exchange membrane fuel cell modeling. J Power Sources 147(1–2):72–84

    Article  Google Scholar 

  39. Siegel C (2008) Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy 33(9):1331–1352

    Article  Google Scholar 

  40. Song GH, Meng H (2013) Numerical modeling and simulation of PEM fuel cells: progress and perspective. Acta Mech Sinica 29(3):318–334

    Article  Google Scholar 

  41. Eikerling M, Kulikovsky A (2014) Polymer electrolyte fuel cells: physical principles of materials and operation. CRC Press, Boca Raton

    Book  Google Scholar 

  42. Kulikovsky AA (2010) Analytical modelling of fuel cells, vol 43. Elsevier, Amsterdam/Boston

    Google Scholar 

  43. Eikerling M, Kornyshev A (1998) Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells. J Electroanal Chem 453(1–2):89–106

    Article  Google Scholar 

  44. Secanell M, Karan K, Suleman A, Djilali N (2007) Multi-variable optimization of PEMFC cathodes using an agglomerate model. Electrochim Acta 52(22):6318–6337

    Article  Google Scholar 

  45. Mangal P, Pant LM, Carrigy N, Dumontier M, Zingan V, Mitra S, Secanell M (2015) Experimental study of mass transport in PEMFCs: through plane permeability and molecular diffusivity in GDLs. Electrochim Acta 167:160–171

    Article  Google Scholar 

  46. Zamel N, Li X (2013) Effective transport properties for polymer electrolyte membrane fuel cells – with a focus on the gas diffusion layer. Prog Energy Combust Sci 39(1):111–146

    Article  Google Scholar 

  47. Shen J, Zhou J, Astrath NG, Navessin T, Liu ZSS, Lei C, Rohling JH, Bessarabov D, Knights S, Ye S (2011) Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. J Power Sources 196(2):674–678

    Article  Google Scholar 

  48. Chan C, Zamel N, Li X, Shen J (2012) Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells. Electrochim Acta 65:13–21

    Article  Google Scholar 

  49. Owejan JP, Owejan JE, Gu W (2013) Impact of platinum loading and catalyst layer structure on PEMFC performance. J Electrochem Soc 160(8):F824–F833

    Article  Google Scholar 

  50. Weber A, Kusoglu A (2014) Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J Mater Chem A 2(41):17,207–17,211

    Article  Google Scholar 

  51. Secanell M, Putz A, Shukla S, Wardlaw P, Bhaiya M, Pant LM, Sabharwal M (2015) Mathematical modelling and experimental analysis of thin, low-loading fuel cell electrodes. ECS Trans 69(17):157–187

    Article  Google Scholar 

  52. Ziegler C, Thiele S, Zengerle R (2011) Direct three-dimensional reconstruction of a nanoporous catalyst layer for a polymer electrolyte fuel cell. J Power Sources 196(4):2094–2097

    Article  Google Scholar 

  53. Epting W, Gelb J, Litster S (2012) Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale X-ray computed tomography. Adv Funct Mater 22(3):555–560

    Article  Google Scholar 

  54. Zhang X, Gao Y, Ostadi H, Jiang K, Chen R (2014) Modelling water intrusion and oxygen diffusion in a reconstructed microporous layer of PEM fuel cells. Int J Hydrog Energy 39(30):17,222–17,230

    Article  Google Scholar 

  55. Wargo E, Kotaka T, Tabuchi Y, Kumbur E (2013) Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials. J Power Sources 241:608–618

    Article  Google Scholar 

  56. Thiele S, Fürstenhaupt T, Banham D, Hutzenlaub T, Birss V, Ziegler C, Zengerle R (2013) Multiscale tomography of nanoporous carbon-supported noble metal catalyst layers. J Power Sources 228:185–192

    Article  Google Scholar 

  57. Lopez-Haro M, Guétaz L, Printemps T, Morin A, Escribano S, Jouneau PH, Bayle-Guillemaud P, Chandezon F, Gebel G (2014) Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat Commun 5:5229–5234

    Google Scholar 

  58. Paul DK, Karan K (2014) Conductivity and wettability changes of ultrathin Nafion films subjected to thermal annealing and liquid water exposure. J Phys Chem C 118(4):1828–1835

    Article  Google Scholar 

  59. Liu H, Epting W, Litster S (2015) Gas transport resistance in polymer electrolyte thin films on oxygen reduction reaction catalysts. Langmuir 31(36):9853–9858

    Article  Google Scholar 

  60. Cecen A, Wargo E, Hanna A, Turner D, Kalidindi S, Kumbur E (2012) 3-D microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity. J Electrochem Soc 159(3):B299–B307

    Article  Google Scholar 

  61. Wang XD, JL X, Yan WM, Lee DJ, Su A (2011) Transient response of PEM fuel cells with parallel and interdigitated flow field designs. Int J Heat Mass Transf 54(11):2375–2386

    Article  MATH  Google Scholar 

  62. Peng J, Shin J, Song T (2008) Transient response of high temperature PEM fuel cell. J Power Sources 179(1):220–231

    Article  Google Scholar 

  63. Jo A, Lee S, Kim W, Ko J, Ju H (2015) Large-scale cold-start simulations for automotive fuel cells. Int J Hydrog Energy 40(2):1305–1315. 44

    Article  Google Scholar 

  64. Ko J, Ju H (2012) Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells. Appl Energy 94:364–374

    Article  Google Scholar 

  65. Kim H, Jeon S, Cha D, Kim Y (2016) Numerical analysis of a high-temperature proton exchange membrane fuel cell under humidified operation with stepwise reactant supply. Int J Hydrog Energy 41(31):13657–13665

    Article  Google Scholar 

  66. Yin Y, Wang J, Yang X, Du Q, Fang J, Jiao K (2014) Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes. Int J Hydrog Energy 39(25):13671–13680

    Article  Google Scholar 

  67. Chen X, Jia B, Yin Y, Du Q (2013) Numerical simulation of transient response of inlet relative humidity for high temperature PEM fuel cells with material properties. Adv Mater Res 625:226–229. Trans Tech Publ

    Article  Google Scholar 

  68. Wu H, Berg P, Li X (2010) Modeling of PEMFC transients with finite-rate phase-transfer processes. J Electrochem Soc 157(1):B1–B12

    Article  Google Scholar 

  69. Verma A, Pitchumani R (2015) Analysis and optimization of transient response of polymer electrolyte fuel cells. J Fuel Cell Sci Technol 12(1):011005

    Article  Google Scholar 

  70. Gomez A, Raj A, Sasmito A, Shamim T (2014) Effect of operating parameters on the transient performance of a polymer electrolyte membrane fuel cell stack with a dead-end anode. Appl Energy 130:692–701

    Article  Google Scholar 

  71. Sousa T, Mamlouk M, Scott K, Rangel C (2012) Three dimensional model of a high temperature PEMFC. Study of the flow field effect on performance. Fuel Cells 12(4):566–576

    Article  Google Scholar 

  72. Songprakorp R (2008) Investigation of transient phenomena of proton exchange membrane fuel cells. PhD thesis, University of Victoria

    Google Scholar 

  73. Roy A, Serincan M, Pasaogullari U, Renfro M, Cetegen B (2009), Transient computational analysis of proton exchange membrane fuel cells during load change and non-isothermal start-up. In: ASME 2009 7th international conference on fuel cell science, engineering and technology. American Society of Mechanical Engineers, pp 429–438

    Google Scholar 

  74. Wu H, Li X, Berg P (2007) Numerical analysis of dynamic processes in fully humidified PEM fuel cells. Int J Hydrog Energy 32(12):2022–2031

    Article  Google Scholar 

  75. Sousa T, Mamlouk M, Scott K (2010) A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Int J Hydrog Energy 35(21):12065–12080

    Article  Google Scholar 

  76. Qu S, Li X, Ke C, Shao ZG, Yi B (2010) Experimental and modeling study on water dynamic transport of the proton exchange membrane fuel cell under transient air flow and load change. J Power Sources 195(19):6629–6636

    Article  Google Scholar 

  77. Bao C, Bessler W (2015) Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development. J Power Sources 275:922–934

    Article  Google Scholar 

  78. Balliet R, Newman J (2010) Two-dimensional model for cold start in a polymer-electrolyte-membrane fuel cell. ECS Trans 33(1):1545–1559

    Article  Google Scholar 

  79. Wang Y, Wang CY (2005) Transient analysis of polymer electrolyte fuel cells. Electrochim Acta 50(6):1307–1315

    Article  Google Scholar 

  80. Wang C, Nehrir M, Shaw S (2005) Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Convers 20(2):442–451

    Article  Google Scholar 

  81. Vang J, Andreasen S, Kær S (2012) A transient fuel cell model to simulate HTPEM fuel cell impedance spectra. J Fuel Cell Sci Technol 9(2):021005

    Article  Google Scholar 

  82. Secanell M (2007) Computational modeling and optimization of proton exchange membrane fuel cells. PhD thesis, University of Victoria

    Google Scholar 

  83. OpenFCST. http://www.openfcst.org/. Accessed on 30 Jun 2017

  84. Fast-FC. https://www.fastsimulations.com/. Accessed on 30 Jun 2017 45

  85. OpenPNM. http://openpnm.org/. Accessed on 12 Jul 2017

  86. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part II: degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 172(1):145–154

    Article  MathSciNet  Google Scholar 

  87. Wu J, Yuan X, Martin J, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184(1):104–119

    Article  Google Scholar 

  88. Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180(1):1–14

    Article  Google Scholar 

  89. Antunes R, De Oliveira M, Ett G, Ett V (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance. J Power Sources 196(6):2945–2961

    Article  Google Scholar 

  90. Cunningham B, Huang J, Baird D (2007) Review of materials and processing methods used in the production of bipolar plates for fuel cells. Int Mater Rev 52(1):1–13

    Article  Google Scholar 

  91. Karimi S, Fraser N, Roberts B, Foulkes F (2012) A review of metallic bipolar plates for proton exchange membrane fuel cells: materials and fabrication methods. Adv Mater Sci Eng 2012:1–22

    Article  Google Scholar 

  92. Tawfik H, Hung Y, Mahajan D (2007) Metal bipolar plates for PEM fuel cell – a review. J Power Sources 163(2):755–767

    Article  Google Scholar 

  93. Antunes R, Oliveira M, Ett G, Ett V (2010) Corrosion of metal bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 35(8):3632–3647

    Article  Google Scholar 

  94. Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30(12):1297–1302

    Article  Google Scholar 

  95. Lu Z, Kandlikar S, Rath C, Grimm M, Domigan W, White A, Hardbarger M, Owejan J, Trabold T (2009) Water management studies in PEM fuel cells, part II: ex situ investigation of flow maldistribution, pressure drop and two-phase flow pattern in gas channels. Int J Hydrog Energy 34(8):3445–3456

    Article  Google Scholar 

  96. Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrog Energy 30:359–371

    Article  Google Scholar 

  97. Allen GM, Resnick G (2008) Porous plate for a fuel cell. US Pat Off, US20080160366 A1

    Google Scholar 

  98. Mathias MF, Roth J, Fleming J, Lehnert W (2010) Handbook of fuel cells. Wiley, Hoboken

    Google Scholar 

  99. Cindrella L, Kannan A, Lin J, Saminathan K, Ho Y, Lin C, Wertz J (2009) Gas diffusion layer for proton exchange membrane fuel cells – a review. J Power Sources 194(1):146–160

    Article  Google Scholar 

  100. Park J, Oh H, Ha T, Lee Y, Min K (2015) A review of the gas diffusion layer in proton exchange membrane fuel cells: durability and degradation. Appl Energy 155:866–880

    Article  Google Scholar 

  101. Hartnig C, Jörissen L, Kerres J, Lehnert W, Scholta J (2008) Polymer electrolyte membrane fuel cells. In: Mater for fuel cells, 1st edn. CRC Press/Woodhead Publ Ltd, Boca Raton/Boston/New York/Washington DC/Cambridge, pp 101–184

    Chapter  Google Scholar 

  102. Rashapov R, Unno J, Gostick J (2015) Characterization of PEMFC gas diffusion layer porosity. J Electrochem Soc 162(6):F603–F612

    Article  Google Scholar 

  103. Zenyuk IV, Parkinson DY, Connolly LG, Weber AZ (2016) Gas-diffusion-layer structural properties under compression via X-ray tomography. J Power Sources 328:364–376

    Article  Google Scholar 

  104. Gostick JT, Ioannidis MA, Fowler MW, Pritzker MD (2009) On the role of the microporous layer in PEMFC operation. Electrochem Commun 11(3):576–579

    Article  Google Scholar 

  105. Malevich D, Halliop E, Peppley BA, Pharoah JG, Karan K (2009) Investigation of charge-transfer and mass-transport resistances in PEMFCs with microporous layer using electrochemical impedance spectroscopy. J Electrochem Soc 156(2):B216–B224. 46

    Article  Google Scholar 

  106. Stampino PG, Cristiani C, Dotelli G, Omati L, Zampori L, Pelosato R, Guilizzoni M (2009) Effect of different substrates, inks composition and rheology on coating deposition of microporous layer (MPL) for PEM-FCs. Catal Today 147:S30–S35

    Article  Google Scholar 

  107. Weber AZ, Newman J (2005) Effects of microporous layers in polymer electrolyte fuel cells. J Electrochem Soc 152(4):A677–A688

    Article  Google Scholar 

  108. Lin G, Nguyen TV (2005) Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J Electrochem Soc 152(10):A1942–A1948

    Article  Google Scholar 

  109. Karan K, Atiyeh H, Phoenix A, Halliop E, Pharoah J, Peppley B (2007) An experimental investigation of water transport in PEMFCs the role of microporous layers. Electrochem Solid-State Lett 10(2):B34–B38

    Article  Google Scholar 

  110. Owejan JP, Owejan JE, Gu W, Trabold TA, Tighe TW, Mathias MF (2010) Water transport mechanisms in PEMFC gas diffusion layers. J Electrochem Soc 157(10):B1456–B1464

    Article  Google Scholar 

  111. Thomas A, Maranzana G, Didierjean S, Dillet J, Lottin O (2014) Thermal and water transfer in PEMFCs: investigating the role of the microporous layer. Int J Hydrog Energy 39(6):2649–2658

    Article  Google Scholar 

  112. Schulze M, Wagner N, Kaz T, Friedrich K (2007) Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells. Electrochim Acta 52(6):2328–2336

    Article  Google Scholar 

  113. Yang Z, Ball S, Condit D, Gummalla M (2011) Systematic study on the impact of Pt particle size and operating conditions on PEMFC cathode catalyst durability. J Electrochem Soc 158(11):B1439–B1445

    Article  Google Scholar 

  114. Ahluwalia R, Arisetty S, Wang X, Wang X, Subbaraman R, Ball S, DeCrane S, Myers D (2013) Thermodynamics and kinetics of platinum dissolution from carbon-supported electrocatalysts in aqueous media under potentiostatic and potentiodynamic conditions. J Electrochem Soc 160(4):F447–F455

    Article  Google Scholar 

  115. Topalov A, Cherevko S, Zeradjanin A, Meier J, Katsounaros I, Mayrhofer K (2014) Towards a comprehensive understanding of platinum dissolution in acidic media. Chem Sci 5(2):631–638

    Article  Google Scholar 

  116. Dubau L, Castanheira L, Maillard F, Chatenet M, Lottin O, Maranzana G, Dillet J, Lamibrac A, Perrin JC, Moukheiber E et al (2014) A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies. Wiley Interdiscip Rev Energy Environ 3(6):540–560

    Article  Google Scholar 

  117. Arisetty S, Wang X, Ahluwalia R, Mukundan R, Borup R, Davey J, Langlois D, Gambini F, Polevaya O, Blanchet S (2012) Catalyst durability in PEM fuel cells with low platinum loading. J Electrochem Soc 159(5):B455–B462

    Article  Google Scholar 

  118. Rinaldo S, Stumper J, Eikerling M (2010) Physical theory of platinum nanoparticle dissolution in polymer electrolyte fuel cells. J Phys Chem C 114(13):5773–5785

    Article  Google Scholar 

  119. Meyers J, Darling R (2006) Model of carbon corrosion in PEM fuel cells. J Electrochem Soc 153(8):A1432–A1442

    Article  Google Scholar 

  120. Pandy A, Yang Z, Gummalla M, Atrazhev V, Kuzminyh N, Sultanov V, Burlatsky S (2013) A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell. J Electrochem Soc 160(9):F972–F979

    Article  Google Scholar 

  121. Franco A, Gerard M (2008) Multiscale model of carbon corrosion in a PEFC: coupling with electrocatalysis and impact on performance degradation. J Electrochem Soc 155(4):B367–B384

    Article  Google Scholar 

  122. Franco A, Guinard M, Barthe B, Lemaire O (2009) Impact of carbon monoxide on PEFC catalyst carbon support degradation under current-cycled operating conditions. Electrochim Acta 54(22):5267–5279

    Article  Google Scholar 

  123. Solasi R, Zou Y, Huang X, Reifsnider K, Condit D (2007) On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. J Power Sources 167(2):366–377

    Article  Google Scholar 

  124. Khattra N, Karlsson A, Santare M, Walsh P, Busby F (2012) Effect of time-dependent material properties on the mechanical behavior of PFSA membranes subjected to humidity cycling. J Power Sources 214(365–376):47

    Google Scholar 

  125. Khattra N, Santare M, Karlsson A, Schmiedel T, Busby F (2015) Effect of water transport on swelling and stresses in PFSA membranes. Fuel Cells 15(1):178–188

    Article  Google Scholar 

  126. Coulon R, Bessler W, Franco A (2010) Modeling chemical degradation of a polymer electrolyte membrane and its impact on fuel cell performance. ECS Trans 25(35):259–273

    Article  Google Scholar 

  127. Yu T, Sha Y, Liu WG, Merinov B, Shirvanian P, Goddard W III (2011) Mechanism for degradation of Nafion in PEM fuel cells from quantum mechanics calculations. J Am Chem Soc 133(49):19857–19863

    Article  Google Scholar 

  128. Robin C, Gérard M, Quinaud M, d’Arbigny J, Bultel Y (2016) Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests. J Power Sources 326:417–427

    Article  Google Scholar 

  129. Park S, Lee JW, Popov BN (2012) A review of gas diffusion layer in PEM fuel cells: materials and designs. Int J Hydrog Energy 37(7):5850–5865

    Article  Google Scholar 

  130. Kim S, Mench M (2009) Investigation of temperature-driven water transport in polymer electrolyte fuel cell: thermo-osmosis in membranes. J Membr Sci 328(1):113–120

    Article  Google Scholar 

  131. Kim S, Ahn BK, Mench M (2008) Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: diffusion media effects. J Power Sources 179(1):140–146

    Article  Google Scholar 

  132. Swamy T, Kumbur E, Mench M (2010) Characterization of interfacial structure in PEFCs: water storage and contact resistance model. J Electrochem Soc 157(1):B77–B85

    Article  Google Scholar 

  133. Kalidindi A, Taspinar R, Litster S, Kumbur E (2013) A two-phase model for studying the role of microporous layer and catalyst layer interface on polymer electrolyte fuel cell performance. Int J Hydrog Energy 38(22):9297–9309

    Article  Google Scholar 

  134. Hizir F, Ural S, Kumbur E, Mench M (2010) Characterization of interfacial morphology in polymer electrolyte fuel cells: micro-porous layer and catalyst layer surfaces. J Power Sources 195(11):3463–3471

    Article  Google Scholar 

  135. Zenyuk IV, Taspinar R, Kalidindi AR, Kumbur EC, Litster S (2013) Coupling of deterministic contact mechanics model and two-phase model to study the effect of catalyst layer – microporous layer interface on polymer electrolyte fuel cell performance. ECS Trans 58(1):1125–1135

    Article  Google Scholar 

  136. Zielke L, Vierrath S, Moroni R, Mondon A, Zengerle R, Thiele S (2016) Three-dimensional morphology of the interface between micro porous layer and catalyst layer in a polymer electrolyte membrane fuel cell. RSC Adv 6(84):80700–80705

    Article  Google Scholar 

  137. Gebel G, Loppinet B (1996) Colloidal structure of ionomer solutions in polar solvents. J Mol Struct 383(1–3):431–442

    Google Scholar 

  138. Welch C, Labouriau A, Hjelm R, Orler B, Johnston C, Kim Yu S (2012) Nafion in dilute solvent systems: dispersion or solution? ACS Macro Lett 1(12):1403

    Article  Google Scholar 

  139. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117(3):987–1104

    Article  Google Scholar 

  140. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM et al (2015) High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348(6240):1230–1234

    Article  Google Scholar 

  141. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2(6):454–460

    Article  Google Scholar 

  142. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49(46):8602–8607

    Article  Google Scholar 

  143. Wu G, More K, Johnston C, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447. 48

    Article  Google Scholar 

  144. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston C, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4(1):114–130

    Article  Google Scholar 

  145. Lefèvre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  146. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M et al (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343(6177):1339–1343

    Article  Google Scholar 

  147. Gu J, Zhang YW, Tao FF (2012) Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev 41(24):8050–8065

    Article  Google Scholar 

  148. Banham D, Ye S (2017) Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett 2(3):629–638

    Article  Google Scholar 

  149. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1):9–35

    Article  Google Scholar 

  150. Wilson A, Marcinkoski J, Papageorgopoulos D (2016). DOE Hydrogen and fuel cells program record #16020

    Google Scholar 

  151. Marcinkoski J, Spendelow J, Wilson A, Papageorgopoulos D (2015). DOE hydrogen and fuel cells program record #15015

    Google Scholar 

  152. Kim KH, Lee KY, Kim HJ, Cho E, Lee SY, Lim TH, Yoon SP, Hwang IC, Jang JH (2010) The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method. Int J Hydrog Energy 35(5):2119–2126

    Article  Google Scholar 

  153. Jeon S, Lee J, Rios GM, Kim HJ, Lee SY, Cho E, Lim TH, Jang JH (2010) Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method. Int J Hydrog Energy 35(18):9678–9686

    Article  Google Scholar 

  154. Song J, Cha S, Lee W (2001) Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. J Power Sources 94(1):78–84

    Article  Google Scholar 

  155. Du S, Millington B, Pollet BG (2011) The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells. Int J Hydrog Energy 36(7):4386–4393

    Article  Google Scholar 

  156. Shukla S, Stanier D, Saha M, Stumper J, Secanell M (2016) Analysis of inkjet printed PEFC electrodes with varying platinum loading. J Electrochem Soc 163(7):F677–F687

    Article  Google Scholar 

  157. Secanell M, Carnes B, Suleman A, Djilali N (2007) Numerical optimization of proton exchange membrane fuel cell cathodes. Electrochim Acta 52(7):2668–2682

    Article  Google Scholar 

  158. Hao L, Moriyama K, Gu W, Wang CY (2015) Modeling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells. J Electrochem Soc 162(8):F854–F867

    Article  Google Scholar 

  159. Suzuki A, Sen U, Hattori T, Miura R, Nagumo R, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Williams MC et al (2011) Ionomer content in the catalyst layer of polymer electrolyte membrane fuel cell (PEMFC): effects on diffusion and performance. Int J Hydrog Energy 36(3):2221–2229

    Article  Google Scholar 

  160. Berning T, Djilali N (2003) Three-dimensional computational analysis of transport phenomena in a PEM fuel cell – a parametric study. J Power Sources 124(2):440–452

    Article  Google Scholar 

  161. Sivertsen B, Djilali N (2005) CFD based modelling of proton exchange membrane fuel cells. J Power Sources 141(1):65–78

    Article  Google Scholar 

  162. Sun W, Peppley B, Karan K (2005) An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochim Acta 50(16):3359–3374

    Article  Google Scholar 

  163. Broka K, Ekdunge P (1997) Modelling the PEM fuel cell cathode. J Appl Electrochem 27(3):281–289. 49

    Article  Google Scholar 

  164. Siegel N, Ellis M, Nelson D, Von Spakovsky M (2003) Single domain PEMFC model based on agglomerate catalyst geometry. J Power Sources 115(1):81–89

    Article  Google Scholar 

  165. Jaouen F, Lindbergh G, Sundholm G (2002) Investigation of mass-transport limitations in the solid polymer fuel cell cathode – I. Mathematical model. J Electrochem Soc 149(4):A437–A447

    Article  Google Scholar 

  166. Ihonen J, Jaouen F, Lindbergh G, Lundblad A, Sundhlom G (2002) Investigation of mass-transport limitations in the solid polymer fuel cell cathode – II. Experimental. J Electrochem Soc 149(4):A448–A454

    Article  Google Scholar 

  167. Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G (2003) Influence of the compositon on the structure and electrochemical characteristics of the PEMFC cathode. Electochimica Acta 48:4175–4187

    Article  Google Scholar 

  168. Secanell M, Songprakorp R, Suleman A, Djilali N (2008) Multi-objective optimization of a polymer electrolyte fuel cell membrane electrode assembly. Energy Environ Sci 1:378–388

    Article  Google Scholar 

  169. Secanell M, Songprakorp R, Djilali N, Suleman A (2010) Optimization of a proton exchange membrane fuel cell membrane electrode assembly. Struct Multidiscip Optim 40(1–6):563–583

    Article  Google Scholar 

  170. Dobson P, Lei C, Navessin T, Secanell M (2012) Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation. J Electrochem Soc 159(5):B514–B523

    Article  Google Scholar 

  171. Shah A, Kim GS, Sui P, Harvey D (2007) Transient non-isothermal model of a polymer electrolyte fuel cell. J Power Sources 163(2):793–806

    Article  Google Scholar 

  172. Xing L, Liu X, Alaje T, Kumar R, Mamlouk M, Scott K (2014) A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy 73:618–634

    Article  Google Scholar 

  173. Xing L, Mamlouk M, Kumar R, Scott K (2014) Numerical investigation of the optimal Nafion® ionomer content in cathode catalyst layer: an agglomerate two-phase flow modelling. Int J Hydrog Energy 39(17):9087–9104

    Article  Google Scholar 

  174. Wang Q, Eikerling M, Song D, Liu Z (2004) Structure and performance of different types of agglomerates in cathode catalyst layers in PEM fuel cells. J Electroanal Chem 573:61–69

    Google Scholar 

  175. Wardlaw P (2014) Modelling of PEMFC catalyst layer mass transport and electro-chemical reactions using multi-scale simulations. Master’s thesis, University of Alberta

    Google Scholar 

  176. Bird RB, Stewart WE, Lightfoot E (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  177. Ma S, Solterbeck CH, Odgaard M, Skou E (2009) Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents. Appl Phys A Mater Sci Process 96(3):581–589

    Article  Google Scholar 

  178. Xu F, Zhang H, Ilavsky J, Stanciu L, Ho D, Justice MJ, Petrache HI, Xie J (2010) Investigation of a catalyst ink dispersion using both ultra-small-angle X-ray scattering and cryogenic TEM. Langmuir 26(24):19,199–19,208

    Article  Google Scholar 

  179. Banham D, Feng F, Fürstenhaupt T, Pei K, Ye S, Birss V (2011) Effect of Pt-loaded carbon support nanostructure on oxygen reduction catalysis. J Power Sources 196(13):5438–5445

    Article  Google Scholar 

  180. Epting W, Litster S (2012) Effects of an agglomerate size distribution on the PEFC agglomerate model. Int J Hydrog Energy 37(10):8505–8511

    Article  Google Scholar 

  181. More K, Borup R, Reeves K (2006) Identifying contributing degradation phenomena in PEM fuel cell membrane electrode assemblies via electron microscopy. ECS Trans 3(1):717–733

    Article  Google Scholar 

  182. Kudo K, Suzuki T, Morimoto Y (2010) Analysis of oxygen dissolution rate from gas phase into Nafion surface and development of an agglomerate model. ECS Trans 33(1):1495–1502

    Article  Google Scholar 

  183. Suzuki T, Kudo K, Morimoto Y (2013) Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J Power Sources 222:379–389

    Article  Google Scholar 

  184. Moore M, Wardlaw P, Dobson P, Boisvert J, Putz A, Spiteri R, Secanell M (2014) Understanding the effect of kinetic and mass transport processes in cathode agglomerates. J Electrochem Soc 161(8):E3125–E3137

    Article  Google Scholar 

  185. Banham D, Feng F, Fürstenhaupt T, Ye S, Birss V (2012) First time investigation of Pt nanocatalysts deposited inside carbon mesopores of controlled length and diameter. J Mater Chem 22(15):7164–7171. 50

    Article  Google Scholar 

  186. Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171(2):558–566

    Article  Google Scholar 

  187. Katsounaros I, Cherevko S, Zeradjanin A, Mayrhofer K (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53(1):102–121

    Article  Google Scholar 

  188. Roen L, Paik C, Jarvi T (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid-State Lett 7(1):A19–A22

    Article  Google Scholar 

  189. Liu Z, Brady B, Carter R, Litteer B, Budinski M, Hyun J, Muller D (2008) Characterization of carbon corrosion-induced structural damage of PEM fuel cell cathode electrodes caused by local fuel starvation. J Electrochem Soc 155(10):B979–B984

    Article  Google Scholar 

  190. Young A, Stumper J, Gyenge E (2009) Characterizing the structural degradation in a PEMFC cathode catalyst layer: carbon corrosion. J Electrochem Soc 156(8):B913–B922

    Article  Google Scholar 

  191. Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150(11):A1523–A1527

    Article  Google Scholar 

  192. Franco AA, Tembely M (2007) Transient multiscale modeling of aging mechanisms in a PEFC cathode. J Electrochem Soc 154(7):B712–B723

    Article  Google Scholar 

  193. Rinaldo S, Lee W, Stumper J, Eikerling M (2011) Model- and theory-based evaluation of Pt dissolution for supported Pt nanoparticle distributions under potential cycling. Electrochem Solid-State Lett 14(5):B47–B49

    Article  Google Scholar 

  194. Holby EF, Morgan D (2012) Application of Pt nanoparticle dissolution and oxidation modeling to understanding degradation in PEM fuel cells. J Electrochem Soc 159(5):B578–B591

    Article  Google Scholar 

  195. Rinaldo S, Lee W, Stumper J, Eikerling M (2014) Mechanistic principles of platinum oxide formation and reduction. Electrocatalysis 5(3):262–272

    Article  Google Scholar 

  196. Redmond E, Setzler B, Alamgir F, Fuller T (2014) Elucidating the oxide growth mechanism on platinum at the cathode in PEM fuel cells. Phys Chem Chem Phys 16(11):5301–5311

    Article  Google Scholar 

  197. Fuller T, Gray G (2006) Carbon corrosion induced by partial hydrogen coverage. ECS Trans 1(8):345–353

    Article  Google Scholar 

  198. Newman J, Thomas-Alyea KE (2012) Electrochemical systems. Wiley, New York

    Google Scholar 

  199. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  200. Verbrugge M, Hill R (1990) Ion and solvent transport in ion-exchange membranes I. A macrohomogeneous mathematical model. J Electrochem Soc 137(3):886–893

    Article  Google Scholar 

  201. Bernardi D, Verbrugge M (1991) Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AICHE J 37(8):1151–1163

    Article  Google Scholar 

  202. Cwirko E, Carbonell R (1992) Interpretation of transport coefficients in Nafion using a parallel pore model. J Membr Sci 67(2–3):227–247

    Article  Google Scholar 

  203. Zhang Z, Jia L, Wang X, Ba L (2011) Effects of inlet humidification on PEM fuel cell dynamic behaviors. Int J Energy Res 35(5):376–388

    Article  Google Scholar 

  204. Li HY, Weng WC, Yan WM, Wang XD (2011) Transient characteristics of proton exchange membrane fuel cells with different flow field designs. J Power Sources 196(1):235–245

    Article  Google Scholar 

  205. Meng H, Ruan B (2011) Numerical studies of cold-start phenomena in PEM fuel cells: a review. Int J Energy Res 35(1):2–14

    Article  Google Scholar 

  206. Yang X, Yin Y, Jia B, Du Q (2013) Analysis of voltage losses in high temperature proton exchange membrane fuel cells with properties of membrane materials and fluent software. Adv Mater Res 625:235–238. Trans Tech Publ 51

    Article  Google Scholar 

  207. Genevey D, von Spakovsky M, Ellis M, Nelson D, Olsommer B, Topin F, Siegel N (2002), Transient model of heat, mass, and charge transfer as well as electrochemistry in the cathode catalyst layer of a PEMFC. In: ASME 2002 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp 393–406

    Google Scholar 

  208. Olapade P, Meyers J, Mukundan R, Davey J, Borup R (2011) Modeling the dynamic behavior of proton-exchange membrane fuel cells. J Electrochem Soc 158(5):B536–B549

    Article  Google Scholar 

  209. Zenyuk IV, Das PK, Weber AZ (2016) Understanding impacts of catalyst-layer thickness on fuel-cell performance via mathematical modeling. J Electrochem Soc 163(7):F691–F703

    Article  Google Scholar 

  210. Eikerling M, Kharkats YI, Kornyshev AA, Volfkovich YM (1998) Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes. J Electrochem Soc 145(8):2684–2699

    Article  Google Scholar 

  211. Fimrite J, Struchtrup H, Djilali N (2005) Transport phenomena in polymer electrolyte membranes. Part I: modeling framework. J Electrochem Soc 152(9):A1804–A1814

    Article  Google Scholar 

  212. Weber AZ, Newman J (2004) Transport in polymer-electrolyte membranes: II. Mathematical model. J Electrochem Soc 151(2):A311–A325

    Article  Google Scholar 

  213. Fimrite J, Struchtrup H, Djilali N (2005) Transport phenomena in polymer electrolyte membranes. Part II: binary friction membrane model. J Electrochem Soc 152(9):A1815–A1823

    Article  Google Scholar 

  214. Kerkhof P, Geboers M (2005) Toward a unified theory of isotropic molecular transport phenomena. AICHE J 51(1):79–121

    Article  Google Scholar 

  215. Kerkhof P, Geboers M (2005) Analysis and extension of the theory of multicomponent fluid diffusion. Chem Eng Sci 60(12):3129–3167

    Article  Google Scholar 

  216. Taylor R, Krishna R (1993) Multicomponent mass transfer Wiley, New York

    Google Scholar 

  217. White F (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  218. Donea J, Huerta A (2003) Finite element methods for flow problems, 1st edn. Wiley, Chichester

    Book  Google Scholar 

  219. Meng H, Wang C (2004) Electron transport in PEFCs. J Electrochem Soc 151(3):A358–A367

    Article  Google Scholar 

  220. Um S, Wang CY, Chen K (2000) Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc 147(12):4485–4493

    Article  Google Scholar 

  221. Shimpalee S, Dutta S, Lee W, Zee JV (1999) Effect of humidity on PEM fuel cell performance: part II-Numerical simulation. ASME-PUBLICATIONS-HTD 364:367–374

    Google Scholar 

  222. Dutta S, Shimpalee S, Zee JV (2000) Three-dimensional numerical simulation of straight channel PEM fuel cells. J Appl Electrochem 30(2):135–146

    Article  Google Scholar 

  223. Zamel N, Li X (2008) A parametric study of multi-phase and multi-species transport in the cathode of PEM fuel cells. Int J Energy Res 32(8):698–721

    Article  Google Scholar 

  224. Pant L, Mitra S, Secanell M (2013) A generalized mathematical model to study gas transport in PEMFC porous media. Int J Heat Mass Transf 58(1–2):70–79

    Article  Google Scholar 

  225. Balen C (2016) A multi-component mass transport model for polymer electrolyte fuel cells. Msc thesis, University of Alberta

    Google Scholar 

  226. Golpaygan A, Ashgriz N (2005) Effects of oxidant fluid properties on the mobility of water droplets in the channels of PEM fuel cell. Int J Energy Res 29(12):1027–1040

    Article  Google Scholar 

  227. Quan P, Zhou B, Sobiesiak A, Liu Z (2005) Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode. J Power Sources 152:131–145

    Article  Google Scholar 

  228. Jiao K, Zhou B, Quan P (2006) Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack. J Power Sources 154(1):124–137. 52

    Article  Google Scholar 

  229. Cai Y, Hu J, Ma H, Yi B, Zhang H (2006) Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell. J Power Sources 161(2):843–848

    Article  Google Scholar 

  230. Choi J, Son G (2008) Numerical study of droplet motion in a microchannel with different contact angles. J Mech Sci Technol 22(12):2590–2599

    Article  Google Scholar 

  231. Bazylak A, Sinton D, Djilali N (2008) Dynamic water transport and droplet emergence in PEMFC gas diffusion layers. J Power Sources 176(1):240–246

    Article  Google Scholar 

  232. Akhtar N, Kerkhof PJAM (2011) Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode. Int J Hydrog Energy 36(4):3076–3086

    Article  Google Scholar 

  233. Jarauta A, Ryzhakov PB, Secanell M, Waghmare PR, Pons-Prats J (2016) Numerical study of droplet dynamics in a polymer electrolyte fuel cell gas channel using an embedded Eulerian-Lagrangian approach. J Power Sources 323:201–212

    Article  Google Scholar 

  234. Ryzhakov PB, Jarauta A, Secanell M, Pons-Prats J (2017) On the application of the PFEM to droplet dynamics modeling in fuel cells. Comput Part Mech 4(3):285–295

    Article  Google Scholar 

  235. Hyman J, Knapp R, Scovel J (1992) High order finite volume approximations of differential operators on nonuniform grids. Phys D Nonlinear Phenom 60(1):112–138

    Article  MathSciNet  MATH  Google Scholar 

  236. ANSYS Fluent. http://www.ansys.com/Products/Fluids/ANSYS-Fluent. Accessed on 30 Jun 2017

  237. STAR-CCM+. https://mdx.plm.automation.siemens.com/star-ccm-plus. Accessed on 30 Jun 2017

  238. OpenFOAM. http://www.openfoam.com/. Accessed on 30 Jun 2017

  239. Zienkiewicz O, Taylor R, Taylor R (1977) The finite element method, vol 3. McGraw-hill, London

    MATH  Google Scholar 

  240. COMSOL Multiphysics. https://www.comsol.com/. Accessed on 30 Jun 2017

  241. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297

    Article  MATH  Google Scholar 

  242. Bangerth W, Hartmann R, Kanschat G (2007) Deal.II – a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24/1–24/27

    Article  MathSciNet  MATH  Google Scholar 

  243. Chen K, Hickner M, Noble D (2005) Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface. Int J Energy Res 29(12):1113–1132

    Article  Google Scholar 

  244. Kumbur E, Sharp K, Mench M (2006) Liquid droplet behavior and instability in a polymer electrolyte fuel cell flow channel. J Power Sources 161:333–345

    Article  Google Scholar 

  245. Jarauta A, Secanell M, Pons-Prats J, Ryzhakov PB, Idelsohn SR, Oñate E (2015) A semi-analytical model for droplet dynamics on the GDL surface of a PEFC electrode. Int J Hydrog Energy 40:5375–5383

    Article  Google Scholar 

  246. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  247. Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. Numer Methods Fluid Dyn 24:273–285

    MATH  Google Scholar 

  248. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of-Fluid interface tracking with smoothed surface stress methods for three dimensional flows. J Comput Phys 152:423–456

    Article  MATH  Google Scholar 

  249. Ferreira RB, Falcão DS, Oliveira VB, Pinto AMFR (2015) Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method – a review. J Power Sources 277:329–342

    Article  Google Scholar 

  250. Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MathSciNet  MATH  Google Scholar 

  251. Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G (1994) Modelling merging and fragmentation in multiphase flows with SURFER. J Comput Phys 113(1):134–147. 53

    Article  MathSciNet  MATH  Google Scholar 

  252. Golpaygan A, Ashgriz N (2008) Multiphase flow model to study channel flow dynamics of PEM fuel cells: deformation and detachment of water droplets. Int J Comput Fluid Dyn 22(1–2):85–95

    Article  MATH  Google Scholar 

  253. Shirani E, Masoomi S (2008) Deformation of a droplet in a channel flow. J Fuel Cell Sci Technol 5(4):041008

    Article  Google Scholar 

  254. Jiao K, Zhou B, Quan P (2006) Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode. J Power Sources 157(1):226–243

    Article  Google Scholar 

  255. Zhan Z, Xiao J, Pan M, Yuan R (2006) Characteristics of droplet and film water motion in the flow channels of polymer electrolyte membrane fuel cells. J Power Sources 160(1):1–9

    Article  Google Scholar 

  256. Quan P, Lai M (2007) Numerical study of water management in the air flow channel of a PEM fuel cell cathode. J Power Sources 164:222–237

    Article  Google Scholar 

  257. Quan P, Lai M (2010) Numerical simulation of two-phase water behavior in the cathode of an interdigitated proton exchange membrane fuel cell. J Fuel Cell Sci Technol 7(1):011017–011030

    Article  Google Scholar 

  258. Theodorakakos A, Ous T, Gavaises M, Nouri J, Nikolopoulos N, Yanagihara H (2006) Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. J Colloid Interface Sci 300:673–687

    Article  Google Scholar 

  259. Le A, Zhou B (2008) A general model of proton exchange membrane fuel cell. J Power Sources 182(1):197–222

    Article  Google Scholar 

  260. Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  261. Osher SJ, Fedkiw RP (2006) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  262. Rossi R, Larese A, Dadvand P, Oñate E (2013) An efficient edge-based level set finite element method for free surface flow problems. Int J Numer Methods Fluids 71(6):687–716

    Article  MathSciNet  Google Scholar 

  263. Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  Google Scholar 

  264. Cruchaga M, Celentano D, Tezduyar T (2001) A moving Lagrangian interface technique for flow computations over fixed meshes. Comput Methods Appl Mech Eng 191(6):525–543

    Article  MATH  Google Scholar 

  265. Barton PT, Obadia B, Drikakis D (2011) A conservative level-set method for compressible solid/fluid problems on fixed grids. J Comput Phys 230:7867–7890

    Article  MathSciNet  MATH  Google Scholar 

  266. Spelt PDM (2005) A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J Comput Phys 207(2):389–404

    Article  MathSciNet  MATH  Google Scholar 

  267. Zhang YL, Zou QP, Greaves D (2010) Numerical simulation of free-surface flow using the level-set method with global mass correction. Int J Numer Methods Fluids 63(6):366–396

    MathSciNet  MATH  Google Scholar 

  268. Ausas RF, Dari EA, Buscaglia GC (2011) A geometric mass-preservating redistancing scheme for the level set function. Int J Numer Methods Fluids 65(8):989–1010

    Article  MATH  Google Scholar 

  269. Ryzhakov PB, Jarauta A (2015) An embedded approach for immiscible multi-fluid problems. Int J Numer Methods Fluids 81:357–376

    Article  MathSciNet  Google Scholar 

  270. Marti J, Ryzhakov P, Idelsohn S, Oñate E (2012) Combined Eulerian-PFEM approach for analysis of polymers in fire situations. Int J Numer Methods Eng 92:782–801

    Article  MathSciNet  MATH  Google Scholar 

  271. Minor G (2007) Experimental study of water droplet flows in a model PEM fuel cell gas microchannel. Master’s thesis, University of Victoria

    Google Scholar 

  272. Nield D, Bejan A (2006) Convection in porous media, vol 3. Springer, New York

    MATH  Google Scholar 

  273. Jackson R (1977) Transport in porous catalysts, Chemical engineering monographs, vol 4. Elsevier Scientific Pub. Co., Amsterdam/New York

    Google Scholar 

  274. Kerkhof P (1996) A modified Maxwell-Stefan model for transport through inert membranes: the binary friction model. Chem Eng J Biochem Eng J 64(3):319–343. 54

    Article  Google Scholar 

  275. Lightfoot E (1973) Transport phenomena and living systems: biomedical aspects of momentum and mass transport. Wiley, New York

    Google Scholar 

  276. Salcedo-Diaz R, Ruiz-Femenia R, Kerkhof P, Peters E (2008) Velocity profiles and circulation in Stefan-diffusion. Chem Eng Sci 63(19):4685–4693

    Article  Google Scholar 

  277. Datta R, Vilekar SA (2010) The continuum mechanical theory of multicomponent diffusion in fluid mixtures. Chem Eng Sci 65(22):5976–5989

    Article  Google Scholar 

  278. Vural Y, Ma L, Ingham DB, Pourkashanian M (2010) Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes. J Power Sources 195(15):4893–4904

    Article  Google Scholar 

  279. Bothe D, Dreyer W (2015) Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech 226(6):1757–1805

    Article  MathSciNet  MATH  Google Scholar 

  280. Akhtar N, Kerkhof P (2012) Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell. J Fuel Cell Sci Technol 9(2):021010

    Article  Google Scholar 

  281. Le A, Zhou B (2009) A generalized numerical model for liquid water in a proton exchange membrane fuel cell with interdigitated design. J Power Sources 193(2):665–683

    Article  Google Scholar 

  282. Le AD, Zhou B (2009) Fundamental understanding of liquid water effects on the performance of a PEMFC with serpentine-parallel channels. Electrochim Acta 54(8):2137–2154

    Article  Google Scholar 

  283. Le A, Zhou B (2010) A numerical investigation on multi-phase transport phenomena in a proton exchange membrane fuel cell stack. J Power Sources 195(16):5278–5291

    Article  Google Scholar 

  284. Tomadakis M, Robertson T (2005) Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J Compos Mater 39(2):163–188

    Article  Google Scholar 

  285. Williams MV, Begg E, Bonville L, Kunz HR, Fenton J (2004) Characterization of gas diffusion layers for PEMFC. J Electrochem Soc 151(8):A1173–A1180

    Article  Google Scholar 

  286. Gostick J, Fowler M, Pritzker M, Ioannidis M, Behra L (2006) In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J Power Sources 162(1):228–238

    Article  Google Scholar 

  287. Feser J, Prasad A, Advani S (2006) Experimental characterization of in-plane permeability of gas diffusion layers. J Power Sources 162(2):1226–1231

    Article  Google Scholar 

  288. Gurau V, Bluemle MJ, De Castro ES, Tsou YM, Zawodzinski TA Jr, Mann JA Jr (2007) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. Absolute permeability. J Power Sources 165(2):793–802

    Article  Google Scholar 

  289. Ismail M, Damjanovic T, Ingham D (2010) Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the in-plane permeability of gas diffusion layers used in proton exchange membrane fuel cells. J Power Sources 195:6619–6628

    Article  Google Scholar 

  290. Tamayol A, Bahrami M (2011) In-plane gas permeability of proton exchange membrane fuel cell gas diffusion layers. J Power Sources 196(7):3559–3564

    Article  Google Scholar 

  291. Pant LM, Mitra SK, Secanell M (2012) Absolute permeability and Knudsen diffusivity measurements in PEMFC gas diffusion layers and micro porous layers. J Power Sources 206:153–160

    Article  Google Scholar 

  292. Carrigy NB, Pant LM, Mitra S, Secanell M (2013) Knudsen diffusivity and permeability of PEMFC microporous coated gas diffusion layers for different polytetrafluoroethylene loadings. J Electrochem Soc 160(2):F81–F89

    Article  Google Scholar 

  293. Tamayol A, McGregor F, Bahrami M (2012) Single phase through-plane permeability of carbon paper gas diffusion layers. J Power Sources 204:94–99

    Article  Google Scholar 

  294. Mangal P, Dumontier M, Carrigy N, Secanell M (2014) Measurements of permeability and effective in-plane gas diffusivity of gas diffusion media under compression. ECS Trans 64(3):487–499

    Article  Google Scholar 

  295. Inoue G, Kawase M (2016) Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell. J Power Sources 327(1–10):55

    Google Scholar 

  296. Tomadakis M, Sotirchos S (1993) Ordinary and transition regime diffusion in random fiber structures. AICHE J 39(3):397–412

    Article  Google Scholar 

  297. Tjaden B, Cooper S, Brett D, Kramer D, Shearing P (2016) On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr Opin Chem Eng 12:44–51

    Article  Google Scholar 

  298. Flückiger R, Freunberger SA, Kramer D, Wokaun A, Scherer GG, Büchi FN (2008) Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC. Electrochim Acta 54(54):551–559

    Article  Google Scholar 

  299. LaManna JM, Kandlikar SG (2011) Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers. Int J Hydrog Energy 36(8):5021–5029

    Article  Google Scholar 

  300. Hwang G, Weber A (2012) Effective-diffusivity measurement of partially-saturated fuel-cell gas-diffusion layers. J Electrochem Soc 159(11):F683–F692

    Article  Google Scholar 

  301. Rashapov R, Gostick J (2016) In-plane effective diffusivity in PEMFC gas diffusion layers. Transp Porous Media 115(3):411–433

    Article  MathSciNet  Google Scholar 

  302. Zamel N, Becker J, Wiegmann A (2012) Estimating the thermal conductivity and diffusion coefficient of the microporous layer of polymer electrolyte membrane fuel cells. J Power Sources 207:70–80

    Article  Google Scholar 

  303. Djilali N, Lu D (2002) Influence of heat transfer on gas and water transport in fuel cells. Int J Therm Sci 41(1):29–40

    Article  Google Scholar 

  304. Zhou J, Putz A, Secanell M (2017) A mixed wettability pore size distribution based mathematical model for analyzing two-phase flow in porous electrodes I. Mathematical model. J Electrochem Soc 164(6):F530–F539

    Article  Google Scholar 

  305. Schlögl R (1966) Membrane permeation in systems far from equilibrium. Ber Bunsenges Phys Chem 70(4):400–414

    Google Scholar 

  306. Singh D, Lu D, Djilali N (1999) A two-dimensional analysis of mass transport in proton exchange membrane fuel cells. Int J Eng Sci 37(4):431–452

    Article  Google Scholar 

  307. Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles E (2001) Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis. Chem Eng Sci 56(2):333–341

    Article  Google Scholar 

  308. Bhaiya M (2014) An open-source two-phase non-isothermal mathematical model of a polymer electrolyte membrane fuel cell. Master’s thesis, University of Alberta

    Google Scholar 

  309. Bhaiya M, Putz A, Secanell M (2014) Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies. Electrochim Acta 147:294–304

    Article  Google Scholar 

  310. Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140(4):1041–1047

    Article  Google Scholar 

  311. Ye X, Wang CY (2007) Measurement of water transport properties through membrane-electrode assemblies I. membranes. J Electrochem Soc 154(7):B676–B682

    Article  Google Scholar 

  312. Xu F, Leclerc S, Stemmelen D, Perrin JC, Retournard A, Canet D (2017) Study of electro-osmotic drag coefficients in Nafion membrane in acid, sodium and potassium forms by electrophoresis NMR. J Membr Sci 536:116–122

    Article  Google Scholar 

  313. Ge S, Yi B, Ming P (2006) Experimental determination of electro-osmotic drag coefficient in Nafion membrane for fuel cells. J Electrochem Soc 153(8):A1443–A1450

    Article  Google Scholar 

  314. Braff W, Mittelsteadt CK (2008) Electroosmotic drag coefficient of proton exchange membranes as a function of relative humidity. ECS Trans 16(2):309–316

    Article  Google Scholar 

  315. Motupally S, Becker A, Weidner J (2000) Diffusion of water in Nafion 115 membranes. J Electrochem Soc 147(9):3171–3177

    Article  Google Scholar 

  316. Fuller TF (1992) Solid-polymer-electrolyte fuel cells, PhD thesis 56

    Google Scholar 

  317. Zhou J, Stanier D, Putz A, Secanell M (2017) A mixed wettability pore size distribution based mathematical model for analyzing two-phase flow in porous electrodes II. Model validation and analysis of micro-structural parameters. J Electrochem Soc 164(6):F540–F556

    Article  Google Scholar 

  318. Tasaka M, Hirai T, Kiyono R, Aki Y (1992) Solvent transoport across cation-exchange membranes under a temperature difference and under an osmotic pressure difference. J Membr Sci 71(1–2):151–159

    Article  Google Scholar 

  319. Villaluenga J, Seoane B, Barragán V, Ruiz-Bauzá C (2006) Thermo-osmosis of mixtures of water and methanol through a Nafion membrane. J Membr Sci 274(1):116–122

    Article  Google Scholar 

  320. Hinatsu JT, Mizuhata M, Takenaka H (1994) Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. J Electrochem Soc 141(6):1493–1498

    Article  Google Scholar 

  321. Liu Y, Murphy M, Baker D, Gu W, Ji C, Jorne J, Gasteiger H (2009) Proton conduction and oxygen reduction kinetics in PEM fuel cell cathodes: effects of ionomer-to-carbon ratio and relative humidity. J Electrochem Soc 156(8):B970–B980

    Article  Google Scholar 

  322. Berg P, Promislow K, Pierre J, Stumper J, Wetton B (2004) Water management in PEM fuel cells. J Electrochem Soc 151(3):A341–A353

    Article  Google Scholar 

  323. Weber AZ (2010) Improved modeling and understanding of diffusion-media wettability on polymer-electrolyte-fuel-cell performance. J Power Sources 195(16):5292–5304

    Article  Google Scholar 

  324. Wang ZH, Wang CY, Chen KS (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sources 94:40–50

    Article  Google Scholar 

  325. Meng H, Wang CY (2005) Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells. J Electrochem Soc 152(9):A1733–A1741

    Article  Google Scholar 

  326. Siegel N, Ellis M, Nelson D, Von Spakovsky M (2004) A two-dimensional computational model of a PEMFC with liquid water transport. J Power Sources 128(2):173–184

    Article  Google Scholar 

  327. Nam JH, Kaviany M (2003) Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium. Int J Heat Mass Transf 46(24):4595–4611

    Article  Google Scholar 

  328. Qin C, Rensink D, Fell S, Hassanizadeh SM (2012) Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell. J Power Sources 197:136–144

    Article  Google Scholar 

  329. Eikerling M (2006) Water management in cathode catalyst layers of PEM fuel cells a structure-based model. J Electrochem Soc 153(3):E58–E70

    Article  Google Scholar 

  330. Weber AZ, Darling RM, Newman J (2004) Modeling two-phase behavior in PEFCs. J Electrochem Soc 151(10):A1715–A1727

    Article  Google Scholar 

  331. Mulone V, Karan K (2013) Analysis of capillary flow driven model for water transport in PEFC cathode catalyst layer: consideration of mixed wettability and pore size distribution. Int J Hydrog Energy 38(1):558–569

    Article  Google Scholar 

  332. Natarajan D, Van Nguyen T (2001) A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. J Electrochem Soc 148(12):A1324–A1335

    Article  Google Scholar 

  333. Wang Z, Wang C, Chen K (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sources 94(1):40–50

    Article  Google Scholar 

  334. Soboleva T, Zhao X, Malek K, Xie Z, Navessin T, Holdcroft S (2010) On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces 2(2):375–384

    Article  Google Scholar 

  335. Thiele S, Zengerle R, Ziegler C (2011) Nano-morphology of a polymer electrolyte fuel cell catalyst layer—Imaging, reconstruction and analysis. Nano Res 4(9):849–860

    Article  Google Scholar 

  336. Gostick J, Ioannidis MA, Pritzker MD, Fowler MW (2010) Impact of liquid water on reactant mass transfer in PEM fuel cell electrodes. J Electrochem Soc 157(4):B563–B571

    Article  Google Scholar 

  337. Rebai M, Prat M (2009) Scale effect and two-phase flow in a thin hydrophobic porous layer. Application to water transport in gas diffusion layers of proton exchange membrane fuel cells. J Power Sources 192(2):534–543. 57

    Article  Google Scholar 

  338. Zenyuk IV, Medici E, Allen J, Weber AZ (2015) Coupling continuum and pore-network models for polymer-electrolyte fuel cells. Int J Hydrog Energy 40(46):16831–16845

    Article  Google Scholar 

  339. Song D, Wang Q, Liu Z, Eikerling M, Xie Z, Navessin T, Holdcroft S (2005) A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells. Electrochim Acta 50(16):3347–3358

    Article  Google Scholar 

  340. Baschuk J, Li X (2000) Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. J Power Sources 86(1):181–196

    Article  Google Scholar 

  341. Culligan P, Barry D (1996) Scaling immiscible flow in porous media. Technical report, Research Report ED 1207 PC, Centre for Water Research, University of Western Australia, Perth

    Google Scholar 

  342. Jiao K, Li X (2011) Water transport in polymer electrolyte membrane fuel cells. Prog Energy Combust Sci 37(3):221–291

    Article  MathSciNet  Google Scholar 

  343. Litster S, Djilali N (2006) Transport phenomena in fuel cells., chapter 5, 1st edn. WIT Press, Ashurst

    MATH  Google Scholar 

  344. Leverett M, Lewis W (1941) Steady flow of gas-oil-water mixtures through unconsolidated sands. Trans AIME 142(01):107–116

    Article  Google Scholar 

  345. Siegel N, Ellis M, Nelson D, Von Spakovsky M (2004) A two-dimensional computational model of a PEMFC with liquid water transport. J Power Sources 128(2):173–184

    Article  Google Scholar 

  346. Natarajan D, Van Nguyen T (2003) Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J Power Sources 115(1):66–80

    Article  Google Scholar 

  347. You L, Liu H (2002) A two-phase flow and transport model for the cathode of PEM fuel cells. Int J Heat Mass Transf 45(11):2277–2287

    Article  MATH  Google Scholar 

  348. Hu M, Gu A, Wang M, Zhu X, Yu L (2004) Three dimensional, two phase flow mathematical model for PEM fuel cell: part I. Model development. Energy Convers Manag 45(11):1861–1882

    Article  Google Scholar 

  349. Meng H (2007) A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. J Power Sources 168(1):218–228

    Article  Google Scholar 

  350. Lin G, Van Nguyen T (2006) A two-dimensional two-phase model of a PEM fuel cell. J Electrochem Soc 153(2):A372–A382

    Article  Google Scholar 

  351. Mateo-Villanueva P (2013) A mixed wettability pore size distribution model for the analysis of water transport in PEMFC materials. Master’s thesis, University of Alberta

    Google Scholar 

  352. Gostick JT, Ioannidis MA, Fowler MW, Pritzker MD (2009) Wettability and capillary behavior of fibrous gas diffusion media for polymer electrolyte membrane fuel cells. J Power Sources 194(1):433–444

    Article  Google Scholar 

  353. Zhang FY, Spernjak D, Prasad AK, Advani SG (2007) In situ characterization of the catalyst layer in a polymer electrolyte membrane fuel cell. J Electrochem Soc 154(11):B1152–B1157

    Article  Google Scholar 

  354. Ihonen J, Mikkola M, Lindbergh G (2004) Flooding of gas diffusion backing in PEFCs: Physical and electro-chemical characterization. J Electrochem Soc 151(8):A1152–A1161

    Article  Google Scholar 

  355. Prasanna M, Ha H, Cho E, Hong SA, IH O (2004) Influence of cathode gas diffusion media on the performance of the pemfcs. J Power Sources 131(1):147–154

    Article  Google Scholar 

  356. Dohle H, Jung R, Kimiaie N, Mergel J, Müller M (2003) Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cellsexperiments and simulation studies. J Power Sources 124(2):371–384

    Article  Google Scholar 

  357. Nguyen T, Lin G, Ohn H, Hussey D, Jacobson D, Arif M (2006) Measurements of two-phase flow properties of the porous media used in pem fuel cells. ECS Trans 3(1):415–423

    Article  Google Scholar 

  358. Koido T, Furusawa T, Moriyama K, Takato K (2006) Two-phase transport properties and transport simulation of the gas diffusion layer of a pefc. ECS Trans 3(1):425–434

    Article  Google Scholar 

  359. Hussaini I, Wang C (2010) Measurement of relative permeability of fuel cell diffusion media. J Power Sources 195(12):3830–3840. 58

    Article  Google Scholar 

  360. Sole JD (2008) Investigation of water transport parameters and processes in the gas diffusion layer of PEM fuel cells. PhD thesis

    Google Scholar 

  361. Gostick JT, Ioannidis MA, Fowler MW, Pritzker MD (2007) Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J Power Sources 173(1):277–290

    Article  Google Scholar 

  362. He G, Ming P, Zhao Z, Abudula A, Xiao Y (2007) A two-fluid model for two-phase flow in PEMFCs. J Power Sources 163(2):864–873

    Article  Google Scholar 

  363. Koido T, Furusawa T, Moriyama K (2008) An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell. J Power Sources 175(1):127–136

    Article  Google Scholar 

  364. Pintauro P, Bennion D (1984) Mass transport of electrolytes in membranes. 1. Development of mathematical transport model. Ind Eng Chem Fundam 23(2):230–234

    Article  Google Scholar 

  365. Natarajan D, Nguyen TV (2004) Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells. J Power Sources 135(1):95–109

    Article  Google Scholar 

  366. Becker J, Flückiger R, Reum M, Büchi FN, Marone F, Stampanoni M (2009) Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy. J Electrochem Soc 156(10):B1175–B1181

    Article  Google Scholar 

  367. Suzuki T, Murata H, Hatanaka T, Morimoto Y (2003) Analysis of the catalyst layer of polymer electrolyte fuel cells. R&D Rev Toyota CRDL 39(3):33–38

    Google Scholar 

  368. Morris DR, Liu SP, Villegas Gonzalez D, Gostick JT (2014) Effect of water sorption on the electronic conductivity of porous polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces 6(21):18609–18618

    Article  Google Scholar 

  369. Weber AZ, Newman J (2003) Transport in polymer-electrolyte membranes: I. Pysical model. J Electrochem Soc 150(7):A1008–A1015

    Article  Google Scholar 

  370. Bekkedahl T (2007) In-Plane conductivity testing procedures & results. In: DOE high temperature membrane working group meeting, Arlington

    Google Scholar 

  371. Iden H, Ohma A, Shinohara K (2009) Analysis of proton transport in pseudo catalyst layers. J Electrochem Soc 156(9):B1078–B1084

    Article  Google Scholar 

  372. Fuller TF, Newman J (1993) Water and thermal management in solid-polymer-electrolyte fuel cells. J Electrochem Soc 140(5):1218–1225

    Article  Google Scholar 

  373. Peron J, Edwards D, Haldane M, Luo X, Zhang Y, Holdcroft S, Shi Z (2011) Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers. J Power Sources 196(1):179–181

    Article  Google Scholar 

  374. Vang J, Zhou F, Andreasen S, Kær S (2015) Estimating important electrode parameters of high temperature PEM fuel cells by fitting a model to polarisation curves and impedance spectra. ECS Trans 68(3):13–34

    Article  Google Scholar 

  375. Adzakpa K, Agbossou K, Dube Y, Dostie M, Fournier M, Poulin A (2008) PEM fuel cells modeling and analysis through current and voltage transient behaviors. IEEE Trans Energy Convers 23(2):581–591

    Article  Google Scholar 

  376. Makharia R, Mathias M, Baker D (2005) Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. J Electrochem Soc 152(5):A970–A977

    Article  Google Scholar 

  377. Springer T, Zawodzinski T, Wilson M, Gottesfeld S (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143(2):587–599

    Article  Google Scholar 

  378. Baricci A, Zago M, Casalegno A (2014) A quasi 2D model of a high temperature polymer fuel cell for the interpretation of impedance spectra. Fuel Cells 14(6):926–937

    Article  Google Scholar 

  379. Shamardina O, Kondratenko M, Chertovich A, Kulikovsky A (2014) A simple transient model for a high temperature PEM fuel cell impedance. Int J Hydrog Energy 39(5):2224–2235

    Article  Google Scholar 

  380. Tant S, Rosini S, Thivel PX, Druart F, Rakotondrainibe A, Geneston T, Bultel Y (2014) An algorithm for diagnosis of proton exchange membrane fuel cells by electrochemical impedance spectroscopy. Electrochim Acta 135(368–379):59

    Google Scholar 

  381. Choopanya P, Yang Z (2014) Transient performance investigation of different flow-field designs of automotive polymer electrolyte membrane fuel cell (PEMFC) using computational fluid dynamics (CFD). In: International conference on heat transfer, fluid mechanics and thermodynamics

    Google Scholar 

  382. Sun W, Peppley BA, Karan K (2005) Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer. J Power Sources 144(1):42–53

    Article  Google Scholar 

  383. Chen S, Kucernak A (2004) Electrocatalysis under conditions of high mass transport: investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J Phys Chem B 108(37):13984–13994

    Article  Google Scholar 

  384. Gasteiger H, Panels J, Yan S (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127(1):162–171

    Article  Google Scholar 

  385. Damjanovic A, Brusic V (1967) Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta 12(6):615–628

    Article  Google Scholar 

  386. Paucirova M, Drazic D, Damjanovic A (1973) The effect of surface coverage by adsorbed oxygen on the kinetics of oxygen reduction at oxide free platinum. Electrochim Acta 18(12):945–951

    Article  Google Scholar 

  387. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface – a microelectrode investigation. J Electrochem Soc 139(9):2530–2537

    Article  Google Scholar 

  388. Markiewicz M, Zalitis C, Kucernak A (2015) Performance measurements and modelling of the ORR on fuel cell electrocatalysts–the modified double trap model. Electrochim Acta 179:126–136

    Article  Google Scholar 

  389. Tafel J (1905) Über die Polarisation bei kathodischer Wasserstoffentwicklung. Z Phys Chem 50:641

    Google Scholar 

  390. Heyrovskỳ J (1927) A theory of overpotential. Recueil des Travaux Chimiques des Pays-Bas 46(8):582–585

    Article  Google Scholar 

  391. Volmer M, Erdey-Gruz T (1930). Principles of adsorption and reaction on solid surfaces, Wiley-Interscience, Hoboken

    Google Scholar 

  392. de Chialvo MRG, Chialvo AC (2004) Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction. Part I. Theoretical aspects. Phys Chem Chem Phys 6(15):4009–4017

    Article  Google Scholar 

  393. Quaino PM, de Chialvo MRG, Chialvo AC (2004) Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction Part II. Evaluation of kinetic parameters. Phys Chem Chem Phys 6(18):4450–4455

    Article  Google Scholar 

  394. Sepa D, Vojnovic M, Damjanovic A (1981) Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim Acta 26(6):781–793

    Article  Google Scholar 

  395. Antoine O, Bultel Y, Durand R (2001) Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J Electroanal Chem 499(1):85–94

    Article  Google Scholar 

  396. Eslamibidgoli MJ, Huang J, Kadyk T, Malek A, Eikerling M (2016) How theory and simulation can drive fuel cell electrocatalysis. Nano Energy 29:334–361

    Article  Google Scholar 

  397. Wang JX, Zhang J, Adzic RR (2007) Double-trap kinetic equation for the oxygen reduction reaction on Pt (111) in acidic media. J Phys Chem A 111(49):12,702–12,710

    Article  Google Scholar 

  398. Walch S, Dhanda A, Aryanpour M, Pitsch H (2008) Mechanism of molecular oxygen reduction at the cathode of a PEM fuel cell: non-electrochemical reactions on catalytic Pt particles. J Phys Chem C 112(22):8464–8475

    Article  Google Scholar 

  399. Moore M, Putz A, Secanell M (2012) Development of a cathode electrode model using the ORR dual-trap intrinsic kinetic model. In: ASME 2012 10th international conference on fuel cell science, engineering and technology collocated with the ASME 2012 6th international conference on energy sustainability. American Society of Mechanical Engineers, pp 367–376

    Google Scholar 

  400. Medici E, Zenyuk I, Parkinson D, Weber A, Allen J (2016) Understanding water transport in polymer electrolyte fuel cells using coupled continuum and pore-network models. Fuel Cells 16(6):725–733

    Article  Google Scholar 

  401. Moore M (2012) Investigation of the double-trap intrinsic kinetic equation for the oxygen reduction reaction and its implementation into a membrane electrode assembly model. Master’s thesis, University of Alberta 60

    Google Scholar 

  402. Huang BT, Chatillon Y, Bonnet C, Lapicque F, Leclerc S, Hinaje M, Raël S (2012) Experimental investigation of air relative humidity (RH) cycling tests on mea/cell aging in pemfc part II: study of low RH cycling test with air RH at 62%/0%. Fuel Cells 12(3):347–355

    Article  Google Scholar 

  403. Breaz E, Gao F, Miraoui A, Tirnovan R (2014) A short review of aging mechanism modeling of proton exchange membrane fuel cell in transportation applications. In: 40th annual conference of the IEEE industrial electronics society, IECON 2014. IEEE, pp 3941–3947

    Google Scholar 

  404. Wang L, Husar A, Zhou T, Liu H (2003) A parametric study of PEM fuel cell performances. Int J Hydrog Energy 28(11):1263–1272

    Article  Google Scholar 

  405. Mazumder S, Cole JV (2003) Rigorous 3-D mathematical modeling of PEM fuel cells II. Model predictions with liquid water transport. J Electrochem Soc 150(11):A1510–A1517

    Article  Google Scholar 

  406. Ju H, Meng H, Wang CY (2005) A single-phase, non-isothermal model for PEM fuel cells. Int J Heat Mass Transf 48(7):1303–1315

    Article  MATH  Google Scholar 

  407. Ju H, Wang CY, Cleghorn S, Beuscher U (2005) Nonisothermal modeling of polymer electrolyte fuel cells I. Experimental validation. J Electrochem Soc 152(8):A1645–A1653

    Article  Google Scholar 

  408. Dutta SSS (2000) Numerical prediction of temperature distribution in PEM fuel cells. Numer Heat Transf Part A Appl 38(2):111–128

    Article  Google Scholar 

  409. Wang Y, Wang CY (2006) A nonisothermal, two-phase model for polymer electrolyte fuel cells. J Electrochem Soc 153(6):A1193–A1200

    Article  Google Scholar 

  410. Rowe A, Li X (2001) Mathematical modeling of proton exchange membrane fuel cells. J Power Sources 102(1):82–96

    Article  Google Scholar 

  411. Ramousse J, Deseure J, Lottin O, Didierjean S, Maillet D (2005) Modelling of heat, mass and charge transfer in a PEMFC single cell. J Power Sources 145(2):416–427

    Article  Google Scholar 

  412. Weber AZ, Newman J (2006) Coupled thermal and water management in polymer electrolyte fuel cells. J Electrochem Soc 153(12):A2205–A2214

    Article  Google Scholar 

  413. Birgersson E, Noponen M, Vynnycky M (2005) Analysis of a two-phase non-isothermal model for a PEFC. J Electrochem Soc 152(5):A1021–A1034

    Article  Google Scholar 

  414. Pasaogullari U, Mukherjee P, Wang CY, Chen K (2007) Anisotropic heat and water transport in a PEFC cathode gas diffusion layer. J Electrochem Soc 154(8):B823–B834

    Article  Google Scholar 

  415. Bapat CJ, Thynell ST (2007) Anisotropic heat conduction effects in proton-exchange membrane fuel cells. J Heat Transf 129(9):1109–1118

    Article  Google Scholar 

  416. Zamel N, Li X (2010) Non-isothermal multi-phase modeling of PEM fuel cell cathode. Int J Energy Res 34(7):568–584

    Google Scholar 

  417. Berning T, Djilali N (2003) A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 150(12):A1589–A1598

    Article  Google Scholar 

  418. Hwang J, Chen P (2006) Heat/mass transfer in porous electrodes of fuel cells. Int J Heat Mass Transf 49(13):2315–2327

    Article  MATH  Google Scholar 

  419. Hwang J, Chao C, Wu W (2006) Thermal-fluid transports in a five-layer membrane-electrode assembly of a PEM fuel cell. J Power Sources 163(1):450–459

    Article  Google Scholar 

  420. Hwang J, Chao C, Chang C, Ho W, Wang D (2007) Modeling of two-phase temperatures in a two-layer porous cathode of polymer electrolyte fuel cells. Int J Hydrog Energy 32(3):405–414

    Article  Google Scholar 

  421. Popiel C, Wojtkowiak J (1998) Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 °C to 150 °C). Heat Transf Eng 19(3):87–101

    Article  Google Scholar 

  422. Chung DW, Ebner M, Ely DR, Wood V, García RE (2013) Validity of the Bruggeman relation for porous electrodes. Model Simul Mater Sci Eng 21(7):074009. 61

    Article  Google Scholar 

  423. Aharony A, Stauffer D (2003) Introduction to percolation theory. Taylor & Francis, London

    MATH  Google Scholar 

  424. Ostadi H, Rama P, Liu Y, Chen R, Zhang X, Jiang K (2010) 3D reconstruction of a gas diffusion layer and a microporous layer. J Membr Sci 351(1):69–74

    Article  Google Scholar 

  425. García-Salaberri PA, Gostick JT, Hwang G, Weber AZ, Vera M (2015) Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: effect of local saturation and application to macroscopic continuum models. J Power Sources 296:440–453

    Article  Google Scholar 

  426. García-Salaberri PA, Hwang G, Vera M, Weber AZ, Gostick JT (2015) Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: effect of through-plane saturation distribution. Int J Heat Mass Transf 86:319–333

    Article  Google Scholar 

  427. Fazeli M, Hinebaugh J, Bazylak A (2016) Incorporating embedded microporous layers into topologically equivalent pore network models for oxygen diffusivity calculations in polymer electrolyte membrane fuel cell gas diffusion layers. Electrochim Acta 216:364–375

    Article  Google Scholar 

  428. Hinebaugh J, Fishman Z, Bazylak A (2010) Unstructured pore network modeling with heterogeneous PEMFC GDL porosity distributions. J Electrochem Soc 157(11):B1651–B1657

    Article  Google Scholar 

  429. Zenyuk IV, Weber AZ (2015) Understanding liquid-water management in PEFCs using X-ray computed tomography and modeling. ECS Trans 69(17):1253–1265

    Article  Google Scholar 

  430. Zenyuk IV, Parkinson DY, Hwang G, Weber AZ (2015) Probing water distribution in compressed fuel-cell gas-diffusion layers using X-ray computed tomography. Electrochem Commun 53:24–28

    Article  Google Scholar 

  431. Kotaka T, Tabuchi Y, Mukherjee PP (2015) Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells. J Power Sources 280:231–239

    Article  Google Scholar 

  432. Berejnov V, Susac D, Stumper J, Hitchcock AP (2011) Nano to micro scale characterization of water up-take in the catalyst coated membrane measured by soft X-ray scanning transmission X-ray microscopy. ECS Trans 41(1):395–402

    Google Scholar 

  433. Saha MS, Tam M, Berejnov V, Susac D, McDermid S, Hitchcock AP, Stumper J (2013) Characterization and performance of catalyst layers prepared by inkjet printing technology. ECS Trans 58(1):797–806

    Article  Google Scholar 

  434. Susac D, Berejnov V, Hitchcock AP, Stumper J (2013) STXM characterization of PEM fuel cell catalyst layers. ECS Trans 50(2):405–413

    Article  Google Scholar 

  435. Wargo E, Hanna A, Cecen A, Kalidindi S, Kumbur E (2012) Selection of representative volume elements for pore-scale analysis of transport in fuel cell materials. J Power Sources 197:168–179

    Article  Google Scholar 

  436. Barbosa R, Andaverde J, Escobar B, Cano U (2011) Stochastic reconstruction and a scaling method to determine effective transport coefficients of a proton exchange membrane fuel cell catalyst layer. J Power Sources 196(3):1248–1257

    Article  Google Scholar 

  437. Sinha PK, Mukherjee PP, Wang CY (2007) Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells. J Mater Chem 17(30):3089–3103

    Article  Google Scholar 

  438. Becker J, Wieser C, Fell S, Steiner K (2011) A multi-scale approach to material modeling of fuel cell diffusion media. Int J Heat Mass Transf 54:1360–1368

    Article  MATH  Google Scholar 

  439. Lange KJ, Misra C, Sui PC, Djilali N (2011) A numerical study on preconditioning and partitioning schemes for reactive transport in a PEMFC catalyst layer. Comput Methods Appl Mech Eng 200(9):905–916

    Article  MathSciNet  MATH  Google Scholar 

  440. Vogel HJ, Tölke J, Schulz V, Krafczyk M, Roth K (2005) Comparison of a lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure–saturation relationships. Vadose Zone J 4(2):380–388

    Article  Google Scholar 

  441. Mukherjee PP, Wang CY, Kang Q (2009) Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochim Acta 54(27):6861–6875

    Article  Google Scholar 

  442. Pharoah J, Choi HW, Chueh CC, Harvey DB (2011) Effective transport properties accounting for electrochemical reactions of proton-exchange membrane fuel cell catalyst layers. ECS Trans 41(1):221–227. 62

    Article  Google Scholar 

  443. El Hannach M, Pauchet J, Prat M (2011) Pore network modeling: application to multiphase transport inside the cathode catalyst layer of proton exchange membrane fuel cell. Electrochim Acta 56(28):10796–10808

    Article  Google Scholar 

  444. El Hannach M, Prat M, Pauchet J (2012) Pore network model of the cathode catalyst layer of proton exchange membrane fuel cells: analysis of water management and electrical performance. Int J Hydrog Energy 37(24):18996–19006

    Article  Google Scholar 

  445. Wu R, Zhu X, Liao Q, Wang H, Yd D, Li J, Ye D (2010) A pore network study on water distribution in bi-layer gas diffusion media: effects of inlet boundary condition and micro-porous layer properties. Int J Hydrog Energy 35(17):9134–9143

    Article  Google Scholar 

  446. Wu R, Zhu X, Liao Q, Wang H, Yd D, Li J, Ye D (2010) A pore network study on the role of micro-porous layer in control of liquid water distribution in gas diffusion layer. Int J Hydrog Energy 35(14):7588–7593

    Article  Google Scholar 

  447. Gostick JT (2013) Random pore network modeling of fibrous PEMFC gas diffusion media using Voronoi and Delaunay tessellations. J Electrochem Soc 160(8):F731–F743

    Article  Google Scholar 

  448. Berson A, Choi HW, Pharoah JG (2011) Determination of the effective gas diffusivity of a porous composite medium from the three-dimensional reconstruction of its microstructure. Phys Rev E 83:026310

    Article  Google Scholar 

  449. Kim SH, Pitsch H (2009) Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J Electrochem Soc 156(6):B673–B681

    Article  Google Scholar 

  450. Becker J, Schulz V, Wiegmann A (2008) Numerical determination of two-phase material parameters of a gas diffusion layer using tomography images. J Fuel Cell Sci Technol 5(2):021006

    Article  Google Scholar 

  451. El Hannach M, Singh R, Djilali N, Kjeang E (2015) Micro-porous layer stochastic reconstruction and transport parameter determination. J Power Sources 282:58–64

    Article  Google Scholar 

  452. El Hannach M, Kjeang E (2014) Stochastic microstructural modeling of PEFC gas diffusion media. J Electrochem Soc 161(9):F951–F960

    Article  Google Scholar 

  453. Espinola A, Miguel PM, Salles MR, Pinto AR (1986) Electrical properties of carbons – resistance of powder materials. Carbon 24(3):337–341

    Article  Google Scholar 

  454. Jinnouchi R, Kudo K, Kitano N, Morimoto Y (2016) Molecular dynamics simulations on O2 permeation through Nafion ionomer on platinum surface. Electrochim Acta 188:767–776

    Article  Google Scholar 

  455. Kudo K, Morimoto Y (2013) Analysis of oxygen transport resistance of Nafion thin film on Pt electrode. ECS Trans 50(2):1487–1494

    Article  Google Scholar 

  456. Hao L, Cheng P (2010) Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J Power Sources 195(12):3870–3881

    Article  Google Scholar 

  457. Moriyama K, Inamuro T (2011) Lattice Boltzmann simulations of water transport from the gas diffusion layer to the gas channel in PEFC. Commun Comput Phys 9(5):1206–1218

    Article  MATH  Google Scholar 

  458. Kim KN, Kang JH, Lee SG, Nam JH, Kim CJ (2015) Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells. J Power Sources 278:703–717

    Article  Google Scholar 

  459. Sinha PK, Wang CY (2007) Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell. Electrochim Acta 52(28):7936–7945

    Article  Google Scholar 

  460. Ji Y, Luo G, Wang CY (2010) Pore-level liquid water transport through composite diffusion media of PEMFC. J Electrochem Soc 157(12):B1753–B1761

    Article  Google Scholar 

  461. Schulz VP, Wargo EA, Kumbur EC (2015) Pore-morphology-based simulation of drainage in porous media featuring a locally variable contact angle. Transp Porous Media 107(1):13–25

    Article  Google Scholar 

  462. Schulz VP, Becker J, Wiegmann A, Mukherjee PP, Wang CY (2007) Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach. J Electrochem Soc 154(4):B419–B426

    Article  Google Scholar 

  463. Zamel N, Li X, Becker J, Wiegmann A (2011) Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte membrane fuel cells. Int J Hydrog. Energy 36(9):5466–5478. 63

    Article  Google Scholar 

  464. Fazeli M, Hinebaugh J, Bazylak A (2015) Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling. J Electrochem Soc 162(7):F661–F668

    Article  Google Scholar 

  465. Zenyuk IV, Lamibrac A, Eller J, Parkinson DY, Marone F, Büchi FN, Weber AZ (2016) Investigating evaporation in gas diffusion layers for fuel cells with X-ray computed tomography. J Phys Chem C 120(50):28701–28711

    Article  Google Scholar 

  466. Lobato J, Cañizares P, Rodrigo MA, Pinar FJ, Mena E, Úbeda D (2010) Three-dimensional model of a 50 cm 2 high temperature PEM fuel cell. Study of the flow channel geometry influence. Int J Hydrog Energy 35(11):5510–5520

    Article  Google Scholar 

  467. Wang Y, Basu S, Wang CY (2008) Modeling two-phase flow in PEM fuel cell channels. J Power Sources 179(2):603–617

    Article  Google Scholar 

  468. Jiao K, Zhou B (2007) Innovative gas diffusion layers and their water removal characteristics in PEM fuel cell cathode. J Power Sources 169(2):296–314

    Article  Google Scholar 

  469. Chen L, Cao T, Li Z, He Y, Tao W (2012) Numerical investigation of liquid water distribution in the cathode side of proton exchange membrane fuel cell and its effects on cell performance. Int J Hydrog Energy 37(11):9155–9170

    Article  Google Scholar 

  470. Zhou J, Shukla S, Putz A, Secanell M (2017) Understanding the role of micro porous layer on fuel cell performance using a non-isothermal two-phase model. Electrochem Acta (Under review)

    Google Scholar 

  471. Nguyen PT, Berning T, Djilali N (2004) Computational model of a PEM fuel cell with serpentine gas flow channels. J Power Sources 130(1):149–157

    Article  Google Scholar 

  472. Gerris flow solver. http://gfs.sourceforge.net/wiki/index.php/Main_Page. Accessed on 12 Jul 2017

  473. Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M, Maier M, Pelteret JP, Turcksin B, Wells D (2017) The deal.II library, version 8.5. J Numer Math 25(3):137–145

    Google Scholar 

  474. Kelly DW, Gago d SR, JP ZOC, Babuska I (1983) A posteriori error analysis and adaptive processes in the finite element method: Part I – error analysis. Int J Numer Methods Eng 19(11):1593–1619

    Article  Google Scholar 

  475. Math2Market®GmbH (2017). GeoDict®

    Google Scholar 

  476. Palabos. http://www.palabos.org/. Accessed on 25 Jul 2017

  477. Gostick J, Aghighi M, Hinebaugh J, Tranter T, Hoeh MA, Day H, Spellacy B, Sharqawy MH, Bazylak A, Burns A et al (2016) Openpnm: a pore network modeling package. Comput Sci Eng 18(4):60–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Secanell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Secanell, M., Jarauta, A., Kosakian, A., Sabharwal, M., Zhou, J. (2019). PEM Fuel Cells: Modeling. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_1019

Download citation

Publish with us

Policies and ethics