Skip to main content
Log in

Mechanistic Principles of Platinum Oxide Formation and Reduction

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In polymer electrolyte fuel cells, the platinum catalyst in its active form is found predominantly in an oxidized state. Formation and reduction of surface oxide species determine both the electrocatalytic activity of the oxygen reduction reaction as well as the rate of corrosive Pt dissolution. Understanding of mechanisms and rates of oxide formation and reduction is therefore essential in view of both performance and durability. Pt(111) is the generic model system for fundamental studies in fuel cell electrochemistry and cyclic voltammetry at Pt(111) gives an unabated view of the oxide formation and reduction processes. The unresolved challenge is to develop an electrochemical kinetic model that allows the current response measured in cyclic voltammetry to be de-convoluted and interpreted in relation to independent spectroscopic, imaging and theoretical data. Accordingly, a kinetic model for Pt(111) oxide formation and reduction within the voltage range of 0.65–1.15 V is developed and evaluated against electrochemical, spectroscopic and computational studies. Considering the complexity of surface processes involved and the simplicity of the proposed model, the agreement with the extensive range of data is convincing. The model provides a comprehensive picture of surface electrochemical processes that occur at Pt(111) in the normal operational voltage range of the cathode catalyst for polymer electrolyte fuel cells in automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Hereafter all potentials will be vs. RHE

References

  1. C. Schönbein, Philos. Mag. Ser. 3 14, 43 (1839)

    Google Scholar 

  2. W. Grove, Phil. Mag. Ser. 3 14, 127 (1839)

    Google Scholar 

  3. M.K. Debe, Nature 486, 43 (2012)

    Article  CAS  Google Scholar 

  4. I. Raistrick, Ext. Abstr. 169th Meeting Electrochem. Soc., Boston, MA May 4–9 86-1, 60 (1986)

  5. H. Angerstein-Kozlowsk, B. Conway, W. Sharp, J. Electroanal. Chem. Interfacial Electrochem. 43, 9 (1973)

    Article  Google Scholar 

  6. B. Conway, Prog. Surf. Sci. 49, 331 (1995)

    Article  CAS  Google Scholar 

  7. N. Markovic, B. Grgur, P. Ross, J. Phys. Chem. B 101, 5405 (1997)

    Article  CAS  Google Scholar 

  8. J. Clavilier, A. Rodes, K. Elachi, M. Zamakchari, J. Chim. Phys. Phys. Chim. Biol. 88, 1291 (1991)

    CAS  Google Scholar 

  9. N. Markovic, T. Schmidt, B. Grgur, H. Gasteiger, R. Behm, P. Ross, J. Phys. Chem. B 103, 8568 (1999)

    Article  CAS  Google Scholar 

  10. K. Yamamoto, D. Kolb, R. Kotz, G. Lehmpfuhl, J. Electroanal. Chem. Interfacial Electrochem. 96, 233 (1979)

    Article  Google Scholar 

  11. G. Jerkiewicz, G. Vatankhah, J. Lessard, M. Soriaga, Y. Park, Electrochim. Acta 49, 1451 (2004)

    CAS  Google Scholar 

  12. D. Gilroy, B. Conway, Can. J. Chem. 46, 875 (1968)

    Article  CAS  Google Scholar 

  13. B. Conway, S. Gottesfeld, J. Chem. Soc. Faraday Trans. 1 69, 1090 (1973)

    Article  CAS  Google Scholar 

  14. E. Yeager, W. Ogrady, M. Woo, P. Hagans, J. Electrochem. Soc. 125, 348 (1978)

    Article  CAS  Google Scholar 

  15. S. Feldberg, C. Enke, C. Bricker, J. Electrochem. Soc. 110, 826 (1963)

    Article  CAS  Google Scholar 

  16. V. Birss, M. Chang, J. Segal, J. Electroanal. Chem. 355, 181 (1993)

    Article  CAS  Google Scholar 

  17. A. Zolfaghari, G. Jerkiewicz, J. Electroanal. Chem. 467, 177 (1999)

    Article  CAS  Google Scholar 

  18. A. Zolfaghari, M. Chayer, G. Jerkiewicz, J. Electrochem. Soc. 144, 3034 (1997)

    Article  CAS  Google Scholar 

  19. M. Farebrother, M. Goledzinowski, G. Thomas, V. Birss, J. Elec troanal. Chem. Interfacial Electrochem. 297, 469 (1991)

    Article  CAS  Google Scholar 

  20. M. Alsabet, M. Grden, G. Jerkiewicz, J. Electronal. Chem. 589, 120 (2006)

    Article  CAS  Google Scholar 

  21. A. Damjanovic, L. Yeh, J. Electrochem. Soc. 126, 555 (1979)

    Article  CAS  Google Scholar 

  22. L. Harris, A. Damjanovic, J. Electrochem. Soc. 122, 593 (1975)

    Article  CAS  Google Scholar 

  23. D. Heyd, D. Harrington, J. Elecyroanal. Chem. 335, 19 (1992)

    Article  CAS  Google Scholar 

  24. A. Damjanovic, L. Yeh, J. Wolf, J. Electrochem. Soc. 127, 874 (1980)

    Article  CAS  Google Scholar 

  25. M. vanderGeest, N. Dangerfield, D. Harrington, J. Electroanal. Chem. 420, 89 (1997)

    Article  CAS  Google Scholar 

  26. B. Conway, G. Jerkiewicz, J. Electroanal. Chem. 339, 123 (1992)

    Article  CAS  Google Scholar 

  27. A. Ward, A. Damjanovic, E. Gray, M. Ojea, J. Electrochem. Soc. 123, 1599 (1976)

    Article  CAS  Google Scholar 

  28. M. Wakisaka, S. Asizawa, H. Uchida, M. Watanabe, Phys. Chem. Chem. Phys. 12, 4184 (2010)

    Article  CAS  Google Scholar 

  29. K. Vetter, J. Schultze, J. Electroanal. Chem. Interfacial Electrochem. 34, 131 (1972)

    CAS  Google Scholar 

  30. D. Gilroy, J. Electroanal, Chem. Interfacial Electrochem. 71, 257 (1976)

    Article  CAS  Google Scholar 

  31. A. Sun, J. Franc, D. Macdonald, J. Electrochem. Soc. 153, B260 (2006)

    Article  CAS  Google Scholar 

  32. D. Harrington, J. Electroanal. Chem. 420, 101 (1997)

    Article  CAS  Google Scholar 

  33. K. Vetter, J. Schultze, J. Electroanal. Chem. Interfacial Elec trochem. 34, 141 (1972)

    CAS  Google Scholar 

  34. B. Conway, B. Barnett, H. Angerstein-Kozlowska, B. Tilak, J. Chem. Phys. 93, 8361 (1990)

    Article  CAS  Google Scholar 

  35. S. Zeitler, E. Wendler-Kalsch, W. Preidel, V. Tegeder, Mater. Corros. 48, 303 (1997)

    Article  CAS  Google Scholar 

  36. X. Wang, R. Kumar, D. Myers, Electrochem. Solid-State Lett. 9, A 225 (2006)

    Article  CAS  Google Scholar 

  37. A.A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J.C. Meier, S.O. Klemm, K.J. Mayrhofer, Angew. Chem. Int. Ed. 51, 12613 (2012)

    Article  CAS  Google Scholar 

  38. M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, M. Watanabe, Langmuir 25, 1897 (2009)

    Article  CAS  Google Scholar 

  39. V. Viswanathan, H. Hansen, J. Rossmeisl, T. Jaramillo, H. Pitsch, J. Norskov, J. Phys. Chem. C 116, 4698 (2012)

    Article  CAS  Google Scholar 

  40. A. Panchenko, M. Koper, T. Shubina, S. Mitchell, E. Roduner, J. Electrochem. Soc. 151, A2016 (2004)

    Article  CAS  Google Scholar 

  41. M. Koper, J. Lukkien, Surf. Sci. 498, 105 (2002)

    Article  CAS  Google Scholar 

  42. C. Hermse, A. van Bavel, M. Koper, J. Lukkien, R. van Santen, A. Jansen, Surf. Sci. 572, 247 (2004)

    Article  CAS  Google Scholar 

  43. M. Koper, J. Lukkien, J. Electroanal. Chem. 485, 161 (2000)

    Article  CAS  Google Scholar 

  44. J.R. Strobl, D.A. Harrington, J. Chem. Phys. 139, 104104 (2013)

    Article  Google Scholar 

  45. B. Tilak, B. Conway, H. Angerstein-Kozlowska, J. Electroanal. Chem. Interfacial Electrochem. 48, 1 (1973)

    Article  CAS  Google Scholar 

  46. E.F. Holby, D. Morgan, J. Electrochem. Soc. 159, B578 (2012)

    Article  CAS  Google Scholar 

  47. A. Appleby, J. Electrochem. Soc. 120, 1205 (1973)

    Article  CAS  Google Scholar 

  48. A. Berna, V. Climent, J.M. Feliu, Electrochem. Commun. 9, 2789 (2007)

    Article  CAS  Google Scholar 

  49. V. Climent, R. Gomez, J.M. Orts, J.M. Feliu, J. Phys. Chem. B 110, 11344 (2006)

    Article  CAS  Google Scholar 

  50. R. Gomez, J. Orts, B. Alvarez-Ruiz, J. Feliu, J. Phys. Chem. B 108, 228 (2004)

    Article  CAS  Google Scholar 

  51. J. Mostany, E. Herrero, J. Feliu, J. Lipkowski, J. Electronal. Chem. 558, 19 (2003)

    Article  CAS  Google Scholar 

  52. J. Clavilier, J. Feliu, A. Fernandezvega, A. Aladaz, J. Electroanal. Chem. 294, 193 (1990)

    Article  CAS  Google Scholar 

  53. S. Mitchell, G. Brown, P. Rikvold, J. Electroanal. Chem. 493, 68 (2000)

    Article  CAS  Google Scholar 

  54. A.M. Gómez-Marín, J.M. Feliu, Electrochim. Acta 104, 367 (2013)

    Article  Google Scholar 

  55. A.M. Gómez-Marín, J. Clavilier, J.M. Feliu, J. Electroanal. Chem. 688, 360 (2013)

    Article  Google Scholar 

  56. K.A. Jaaf-Golze, D. Kolb, D. Scherson, J. Electroanal. Chem. Interfacial Electrochem. 200, 353 (1986)

    Article  Google Scholar 

  57. S. Nie, P. Feibelman, N. Bartelt, K. Thürmer, Phys. Rev. Lett. 105, 26102 (2010)

    Article  CAS  Google Scholar 

  58. H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. Pettersson, A. Nilsson, Phys. Rev. Lett. 89, 276102 (2002)

    Article  CAS  Google Scholar 

  59. C. Clay, S. Haq, A. Hodgson, Phys. Rev. Lett. 92, 46102 (2004)

    Article  CAS  Google Scholar 

  60. X. Su, L. Lianos, Y. Shen, G. Somorjai, Phys. Rev. Lett. 80, 1533 (1998)

    Article  CAS  Google Scholar 

  61. T. Iwasita, X. Xia, J. Electroanal. Chem. 411, 95 (1996)

    Article  Google Scholar 

  62. B. Andreaus, M. Eikerling, J. Electroanal. Chem. 607, 121 (2007)

    Article  CAS  Google Scholar 

  63. M. Wakisaka, S. Asizawa, H. Uchida, M. Watanabe, Phys. Chem. Chem. Phys. 12, 4184 (2010)

    Article  CAS  Google Scholar 

  64. A. Roudgar, M. Eikerling, R. van Santen, Phys. Chem. Chem. Phys. 12, 614 (2010)

    Article  CAS  Google Scholar 

  65. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108, 17886 (2004)

    Article  Google Scholar 

  66. L. Wang, A. Roudgar, M. Eikerling, J. Phys. Chem. C 113, 17989 (2009)

    Article  CAS  Google Scholar 

  67. D.C. Ford, Y. Xu, M. Mavrikakis, Surf. Sci. 587, 159 (2005)

    Article  CAS  Google Scholar 

  68. N. Marković, P. Ross Jr., Surf. Sci. Rep. 45, 117 (2002)

    Article  Google Scholar 

  69. J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007)

    Article  Google Scholar 

  70. V. Komanicky, K. Chang, A. Menzel, N. Markovic, H. You, X. Wang, D. Myers, J. Electrochem. Soc. 153, B446 (2006)

    Article  CAS  Google Scholar 

  71. A.M. Gómez-Marín, J.M. Feliu, Electrochim. Acta 82, 558 (2012)

    Article  Google Scholar 

  72. M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, M. Watanabe, J. Phys. Chem. C 112, 2750 (2008)

    Article  CAS  Google Scholar 

  73. F. Abild-Pedersen, J.P. Greeley, F. Studt, J. Rossmeisl, T.R. Fronczek-Munter, P.G. Moses, E. Skulason, T. Bligaard, J.K. Nørskov, Phys. Rev. Lett. 99 (2007)

  74. D. Savinova, E. Molodkina, A. Danilov, Y. M. Polukarov, Russ. J. Electrochem. 40, 683 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of this work by the Natural Sciences and Engineering Research Council of Canada Collaborative Research and Development Grants program as well as by the collaborating company, AFCC. We would like to thank Jingwei Hu (AFCC), Andreas Putz (AFCC), Chris Richards (AFCC) and Heather Baroody (SFU) for insightful discussions and the reviewers for bringing some critical references to our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Rinaldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinaldo, S.G., Lee, W., Stumper, J. et al. Mechanistic Principles of Platinum Oxide Formation and Reduction. Electrocatalysis 5, 262–272 (2014). https://doi.org/10.1007/s12678-014-0189-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0189-y

Keywords

Navigation