Skip to main content
Log in

In-Plane Effective Diffusivity in PEMFC Gas Diffusion Layers

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The in-plane effective diffusion coefficients in gas diffusion layers typically used in fuel cell electrodes were measured as a function of compression and hydrophobic polymer loading. This method was based on the transient diffusion of oxygen from air into an initially nitrogen purged porous sample and has proven to be accurate, fast, and straightforward. As anticipated, with higher compressions and higher PTFE loadings, effective diffusivity decreased, as a result of less pore space available for transport and because tortuosity increased. When plotted against compressed porosity, the effective diffusivity of untreated and treated materials for a given type of sample collapsed on top of each other, despite the simultaneous impact of PTFE loading and compression. It was possible to distinguish between the impact of PTFE and compression by plotting the data as tortuosity against compressed thickness. High compressions on the sample lead to irreversible damages to the fiber structure, resulting in decreased or unexpectedly low tortuosity. Finally, a percolation model was fitted through one of the tested materials and a reasonable agreement was observed for lower compression, but a fit to the entire data could not be achieved. This was attributed to fundamental structural changes occurring in the sample upon high compressions, an observation that helps to explain the general inability of theoretical tortuosity models to describe GDLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Concentration (%)

D :

Diffusion coefficient (\(\hbox {cm}^{2}\hbox { s}^{-1}\))

\(D'\) :

Normalized effective diffusivity (–)

d :

Diameter (m)

l :

Length domain (m)

t :

Time (s)

w :

PTFE loading (wt%)

z :

Spatial coordinate (m)

\(\alpha \) :

Fitting parameter (–)

\(\delta \) :

Thickness (M)

\(\varepsilon \) :

Porosity (–)

\(\varepsilon _p \) :

Percolation threshold (–)

\(\rho \) :

Density (\(\hbox {kg/m}^{3}\))

\(\tau \) :

Tortuosity (–)

0:

Initial

1:

Final

b :

Bulk

eff:

Effective

PTFE:

Polytetrafluoroethylene

References

  • Astrath, N.G.C., Shen, J., Astrath, F.B.G., Zhou, J., Huang, C., Yuan, X.Z., Wang, H., Navessin, T., Liu, Z.S., Vlajnic, G., Bessarabov, D., Zhao, X.: Note: Determination of effective gas diffusion coefficients of stainless steel films with differently shaped holes using a Loschmidt diffusion cell. Rev. Sci. Instrum. 81, 046104 (2010)

    Article  Google Scholar 

  • Baker, D.R., Caulk, D.A., Neyerlin, K.C., Murphy, M.W.: Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J. Electrochem. Soc. 156, B991–B1003 (2009)

    Article  Google Scholar 

  • Barbir, F.: PEM Fuel Cells: Theory and Practice. Elsevier Academic Press, Amsterdam (2013)

    Google Scholar 

  • Bruggeman, DaG: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935)

    Article  Google Scholar 

  • Carrigy, N.B., Pant, L.M., Mitra, S., Secanell, M.: Knudsen diffusivity and permeability of PEMFC microporous coated gas diffusion layers for different polytetrafluoroethylene loadings. J. Electrochem. Soc. 160, F81–F89 (2013)

    Article  Google Scholar 

  • Çeçen, A., Wargo, E.A., Hanna, A.C., Turner, D.M., Kalidindi, S.R., Kumbur, E.C.: 3-D microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity. J. Electrochem. Soc. 159, B299–B307 (2012)

    Article  Google Scholar 

  • Clennell, M.B.: Tortuosity: a guide through the maze. Geol. Soc. Lond. Spec. Publ. 122, 299–344 (1997)

    Article  Google Scholar 

  • Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford [Eng] (1979)

    Google Scholar 

  • Das, P.K., Li, X., Liu, Z.-S.: Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation. Appl. Energy 87, 2785–2796 (2010)

    Article  Google Scholar 

  • Epstein, N.: On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44, 777–779 (1989)

    Article  Google Scholar 

  • Fishman, Z., Hinebaugh, J., Bazylak, A.: Microscale tomography investigations of heterogeneous porosity distributions of PEMFC GDLs. J. Electrochem. Soc. 157, B1643–B1650 (2010)

    Article  Google Scholar 

  • Flückiger, R., Freunberger, S.A., Kramer, D., Wokaun, A., Scherer, G.G., Büchi, F.N.: Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC. Electrochim. Acta 54, 551–559 (2008)

    Article  Google Scholar 

  • Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461 (2013)

    Article  Google Scholar 

  • Gostick, J., Fowler, M., Pritzker, M., Ioannidis, M., Behra, L.: In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J. Power Sources 162, 228–238 (2006)

    Article  Google Scholar 

  • Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Article  Google Scholar 

  • Holman, J.P.: Experimental Methods for Engineers. McGraw-Hill, Boston (2001)

    Google Scholar 

  • Hwang, G.S., Weber, A.Z.: Effective-diffusivity measurement of partially-saturated fuel-cell gas-diffusion layers. J. Electrochem. Soc. 159, F683–F692 (2012)

    Article  Google Scholar 

  • Kramer, D., Freunberger, S.A., Flückiger, R., Schneider, I.A., Wokaun, A., Büchi, F.N., Scherer, G.G.: Electrochemical diffusimetry of fuel cell gas diffusion layers. J. Electroanal. Chem. 612, 63–77 (2008)

    Article  Google Scholar 

  • LaManna, J.M., Kandlikar, S.G.: Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers. Int. J. Hydrog. Energy 36, 5021–5029 (2011)

    Article  Google Scholar 

  • Lim, C., Wang, C.Y.: Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim. Acta 49, 4149–4156 (2004)

    Article  Google Scholar 

  • Mangal, P., Dumontier, M., Carrigy, N., Secanell, M.: Measurements of permeability and effective in-plane gas diffusivity of gas diffusion media under compression. ECS Trans. 64, 487–499 (2014)

    Article  Google Scholar 

  • Mangal, P., Pant, L.M., Carrigy, N., Dumontier, M., Zingan, V., Mitra, S., Secanell, M.: Experimental study of mass transport in PEMFCs: through plane permeability and molecular diffusivity in GDLs. Electrochim. Acta 167, 160–171 (2015)

    Article  Google Scholar 

  • Mathias, M.F., Roth, J., Fleming, J., Lehnert, W.: Diffusion media materials and characterisation. In: Handbook of Fuel Cells. John Wiley & Sons, Ltd (2010). doi:10.1002/9780470974001.f303046

  • Mehta, V., Cooper, J.S.: Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003)

    Article  Google Scholar 

  • Neale, G.H., Nader, W.K.: Prediction of transport processes within porous media: diffusive flow processes within an homogeneous swarm of spherical particles. AIChE J. 19, 112–119 (1973)

    Article  Google Scholar 

  • Ostadi, H., Rama, P., Liu, Y., Chen, R., Zhang, X.X., Jiang, K.: 3D reconstruction of a gas diffusion layer and a microporous layer. J. Membr. Sci. 351, 69–74 (2010)

    Article  Google Scholar 

  • Quick, C., Ritzinger, D., Lehnert, W., Hartnig, C.: Characterization of water transport in gas diffusion media. J. Power Sources 190, 110–120 (2009)

    Article  Google Scholar 

  • Ramos-Alvarado, B., Sole, J.D., Hernandez-Guerrero, A., Ellis, M.W.: Experimental characterization of the water transport properties of PEM fuel cells diffusion media. J. Power Sources 218, 221–232 (2012)

    Article  Google Scholar 

  • Rashapov, R., Imami, F., Gostick, J.T.: A method for measuring in-plane effective diffusivity in thin porous media. Int. J. Heat Mass Transf. 85, 367–374 (2015a)

    Article  Google Scholar 

  • Rashapov, R.R., Unno, J., Gostick, J.T.: Characterization of PEMFC gas diffusion layer porosity. J. Electrochem. Soc. 162, F603–F612 (2015b)

    Article  Google Scholar 

  • Sadeghi, E., Djilali, N., Bahrami, M.: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. J. Power Sources 196, 246–254 (2011)

    Article  Google Scholar 

  • Santamaria, A.D., Das, P.K., MacDonald, J.C., Weber, A.Z.: Liquid–water interactions with gas-diffusion-layer surfaces. J. Electrochem. Soc. 161, F1184–F1193 (2014)

    Article  Google Scholar 

  • Schulz, V.P., Wargo, E.A., Kumbur, E.C.: Pore-morphology-based simulation of drainage in porous media featuring a locally variable contact angle. Transp. Porous Med. 1–13 (2014). doi:10.1007/s11242-014-0422-4

  • Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007)

    Article  Google Scholar 

  • Shou, D., Fan, J., Ding, F.: Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells. J. Power Sources 225, 179–186 (2013)

    Article  Google Scholar 

  • Todd, D., Schwager, M., Mérida, W.: Three-dimensional anisotropic electrical resistivity of PEM fuel cell transport layers as functions of compressive strain. J. Electrochem. Soc. 162, F265–F272 (2015)

    Article  Google Scholar 

  • Tomadakis, M.M., Sotirchos, S.V.: Effective diffusivities and conductivities of random dispersions of nonoverlapping and partially overlapping unidirectional fibers. J. Chem. Phys. 99, 9820–9827 (1993a)

    Article  Google Scholar 

  • Tomadakis, M.M., Sotirchos, S.V.: Ordinary, transition, and Knudsen regime diffusion in random capillary structures. Chem. Eng. Sci. 48, 3323–3333 (1993b)

    Article  Google Scholar 

  • Utaka, Y., Iwasaki, D., Tasaki, Y., Wang, S.: Measurement of effective oxygen diffusivity in microporous media containing moisture. Heat Trans. Asian Res. 39, 262–276 (2010)

    Google Scholar 

  • Utaka, Y., Tasaki, Y., Wang, S., Ishiji, T., Uchikoshi, S.: Method of measuring oxygen diffusivity in microporous media. Int. J. Heat Mass Transf. 52, 3685–3692 (2009)

    Article  Google Scholar 

  • Vielstich, W., Lamm, A., Gasteiger, H.A., Yokokawa, H.: Handbook of fuel cells: fundamentals, technology, and applications. Wiley, Chichester, Hoboken (2003)

    Google Scholar 

  • Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)

    Article  Google Scholar 

  • Zamel, N., Astrath, N.G.C., Li, X., Shen, J., Zhou, J., Astrath, F.B.G., Wang, H., Liu, Z.-S.: Experimental measurements of effective diffusion coefficient of oxygen–nitrogen mixture in PEM fuel cell diffusion media. Chem. Eng. Sci. 65, 931–937 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The funding provided by the Automotive Fuel Cell Cooperation (AFCC) and the Natural Sciences and Engineering Research Council (NSERC) of Canada is greatly appreciated. The authors also wish to thank SGL Group for donating GDL sample materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff T. Gostick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

See Figs. 10, 11 and 12.

Fig. 10
figure 10

Normalized effective diffusivity \(D^{\prime }\) versus compressed porosity \(\varepsilon \) of untreated and treated SGL 34, SGL 35, TGP-H-060, and TGP-H-060

Fig. 11
figure 11

Tortuosity \(\tau \) versus compressed porosity \(\varepsilon \) of untreated and treated SGL 34, SGL 35, TGP-H-060, and TGP-H-060

Fig. 12
figure 12

Tortuosity \(\tau \) versus thickness ratio \(\delta _0 /\delta \) of untreated and treated SGL 25, SGL 35, TGP-H-060, and TGP-H-060

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashapov, R.R., Gostick, J.T. In-Plane Effective Diffusivity in PEMFC Gas Diffusion Layers. Transp Porous Med 115, 411–433 (2016). https://doi.org/10.1007/s11242-016-0648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0648-4

Keywords

Navigation