Skip to main content
Log in

Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Proton Exchange Membrane (PEM) fuel cell electrodes with different ionomer contents were studied with various microscopic techniques. The morphology and surface potential were examined by Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM), respectively. The particulate nature of the electrode was well displayed in the topography and phase images. The particle and pore size (Z) distributions showed the most frequent values at 30–40 nm and 20–30 nm, respectively. The particle size corresponds to the size of the carbon support for the platinum catalyst. Catalyst agglomeration was observed in high ionomer content electrodes. The surface potential images showed distinct difference to the topography images. The overall grain size was seen to increase, the pore volume to decrease, the surface roughness to decrease, and the surface potential variation to increase with the increase of ionomer content in the catalyst layer. Transmission electron microscopy (TEM) was carried out on selective electrodes to provide additional information and confirmed with the AFM results. Cyclic voltammetry (CV) showed that the electrode containing 30 wt.% ionomer has maximum catalyst utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Stone, A.E. Morrison, Solid State Ion. 152, 1–13 (2002)

    Article  Google Scholar 

  2. B. Smitha, S. Sridhar, A.A. Khan, J. Membr. Sci. 259, 10–26 (2005)

    Article  Google Scholar 

  3. H. Nakajima, S. Nomura, T. Sugimoto et al., J. Electrochem. Soc. 149(8), A953–A959 (2002)

    Article  Google Scholar 

  4. Q.F. Li, R.H. He, J.O. Jensen et al., Chem. Mater. 15(26), 4896–4915 (2003)

    Article  Google Scholar 

  5. R. Souzy, B. Ameduri, Prog. Polym. Sci. 30(6), 644–687 (2005)

    Article  Google Scholar 

  6. T.R. Ralph, G.A. Hards, J.E. Keating et al., J. Electrochem. Soc. 144(11), 3845–3857 (1997)

    Article  Google Scholar 

  7. S.D. Thompson, L.R. Jordan, M. Forsyth, Electrochim. Acta 46(10–11), 1657–1663 (2001)

    Article  Google Scholar 

  8. Z.R. Ismagilov, M.A. Kerzhentsev, N.V. Shikina et al., Catal. Today 102, 58–66 (2005)

    Article  Google Scholar 

  9. J.H. Wee, K.Y. Lee, S.H. Kim, J. Power Sources 165(2), 667–677 (2007)

    Article  Google Scholar 

  10. O. Antoine, Y. Bultel, R. Durand, J. Electroanal. Chem. 499(1), 85–94 (2001)

    Article  Google Scholar 

  11. B. Wang, J. Power Sources 152(1), 1–15 (2005)

    Google Scholar 

  12. R.G. Gonzalez-Huerta, J.A. Chavez-Carvayar, O. Solorza-Feria, J. Power Sources 153(1), 11–17 (2006)

    Article  Google Scholar 

  13. S. Litster, G. McLean, J. Power Sources 130(1–2), 61–76 (2004)

    Article  Google Scholar 

  14. N.P. Brandon, S. Skinner, B.C.H. Steele, Annu. Rev. Mater. Res. 33, 183–213 (2003)

    Article  Google Scholar 

  15. X.L. Cheng, B.L. Yi, M. Han et al., J. Power Sources 79(1), 75–81 (1999)

    Article  Google Scholar 

  16. A. Taniguchi, T. Akita, K. Yasuda et al., J. Power Sources 130(1–2), 42–49 (2004)

    Article  Google Scholar 

  17. J. Xie, D.L. Wood, D.M. Wayne et al., J. Electrochem. Soc. 152(1), A104–A113 (2005)

    Article  Google Scholar 

  18. H. Ghassemi, J.E. McGrath, T.A. Zawodzinski, Polymer 47(11), 4132–4139 (2006)

    Article  Google Scholar 

  19. H. Inoue, H. Daiguji, E. Hihara, JSME Int. J., Ser. B 47(2), 228–234 (2004)

    Article  Google Scholar 

  20. J. Zhang, G.P. Yin, Z.B. Wang et al., J. Power Sources 160(2), 1035–1040 (2006)

    Article  Google Scholar 

  21. M. Sogaard, M. Odgaard, M.E. Skou, Solid State Ion. 145(1–4), 31–35 (2001)

    Article  Google Scholar 

  22. S. Ma, Q. Chen, F.H. Jørgensen et al., Solid State Ion. 178(29–30), 1568–1575 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, S., Solterbeck, CH., Odgaard, M. et al. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents. Appl. Phys. A 96, 581–589 (2009). https://doi.org/10.1007/s00339-008-5050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-5050-9

PACS

Navigation