Advertisement

Pancreatic Cancer pp 1461-1505 | Cite as

Vaccine Therapy and Immunotherapy for Pancreatic Cancer

  • Lei Zheng
  • Elizabeth M. Jaffee
Reference work entry

Abstract

Recent advances in the tumor immunology field of research have enriched our knowledge of how tumor cells initially evade immune surveillance and how existing tumors actively suppress immune recognition of their progression. Based on these advances, strategies for immunotherapy have been developed to enhance antitumor immunity and to target the mechanisms underlying tumor evasion and immune tolerance. These immunotherapy strategies have been employed in the design of novel treatments for pancreatic cancer and are being tested in preclinical studies and human clinical trials. Evidence of immune activation has been demonstrated in a number of these studies and, in some cases, correlated with clinical responses. However, a number of challenges must be addressed before the true potential of immune-based therapies can be determined. Consequently, future studies need to focus on identifying new pancreatic cancer-associated antigens and on identifying and targeting the immune checkpoints that inhibit effective immune cell activation. In addition, the development of these new therapies will require designing clinical trials that efficiently assess combinations of biologics that target multiple immune pathways and incorporate validated predictors of immune response. Finally, demonstrating the success of these new therapies will likely require establishing new criteria to evaluate clinical responses that are associated with immune-mediated mechanisms of tumor control.

Keywords

Pancreatic cancer Immunotherapy Vaccine Immune checkpoint CTLA-4 PD-1 PD-L1 TGF-β IDO 

References

  1. 1.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.CrossRefGoogle Scholar
  2. 2.
    Schmitz-Winnenthal FH, Volk C, Z’Graggen K, Galindo L, Nummer D, Ziouta Y, Bucur M, Weitz J, Schirrmacher V, Buchler MW, Beckhove P. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res. 2005;65:10079–87.CrossRefGoogle Scholar
  3. 3.
    Klein G. Immune surveillance – a powerful mechanism with a limited range. Natl Cancer Inst Monogr. 1976;44:109–13.PubMedGoogle Scholar
  4. 4.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.CrossRefGoogle Scholar
  5. 5.
    Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6:506–20.CrossRefGoogle Scholar
  6. 6.
    Goggins M, Kern SE, Offerhaus JA, Hruban RH. Progress in cancer genetics: lessons from pancreatic cancer. Ann Oncol. 1999;10(Suppl 4):4–8.CrossRefGoogle Scholar
  7. 7.
    Harizi H, Gualde N. Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell Mol Immunol. 2006;3:271–7.PubMedGoogle Scholar
  8. 8.
    Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.CrossRefGoogle Scholar
  9. 9.
    Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3:939–51.CrossRefGoogle Scholar
  10. 10.
    Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001;1:220–8.CrossRefGoogle Scholar
  11. 11.
    Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.CrossRefGoogle Scholar
  12. 12.
    Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4:336–47.CrossRefGoogle Scholar
  13. 13.
    Flies DB, Chen L. The new B7s: playing a pivotal role in tumor immunity. J Immunother. 2007;30:251–60.CrossRefGoogle Scholar
  14. 14.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.CrossRefGoogle Scholar
  15. 15.
    Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319–22.CrossRefGoogle Scholar
  16. 16.
    Kryczek I, Wei S, Zou L, Zhu G, Mottram P, Xu H, Chen L, Zou W. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol. 2006;177:40–4.CrossRefGoogle Scholar
  17. 17.
    Shevach EM. Special regulatory T cell review: how I became a T suppressor/regulatory cell maven. Immunology. 2008;123:3–5.CrossRefGoogle Scholar
  18. 18.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.CrossRefGoogle Scholar
  19. 19.
    Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3:135–42.CrossRefGoogle Scholar
  20. 20.
    McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16:311–23.CrossRefGoogle Scholar
  21. 21.
    Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, Carreno BM, Collins M, Shevach EM. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4 + CD25 + T cells. J Immunol. 2004;173:5008–20.CrossRefGoogle Scholar
  22. 22.
    Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG, Vignali DA. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–13.CrossRefGoogle Scholar
  23. 23.
    Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG. LAG-3 regulates CD8 + T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007;117:3383–92.CrossRefGoogle Scholar
  24. 24.
    Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol. 2005;175:7746–54.CrossRefGoogle Scholar
  25. 25.
    Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61:4766–72.PubMedGoogle Scholar
  26. 26.
    Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med. 2001;194:823–32.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang HY, Peng G, Guo Z, Shevach EM, Wang RF. Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4 + regulatory T cells. J Immunol. 2005;174:2661–70.CrossRefGoogle Scholar
  28. 28.
    Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res. 2007;13:5243–8.CrossRefGoogle Scholar
  29. 29.
    Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67:9518–27.CrossRefGoogle Scholar
  30. 30.
    Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:206–21.CrossRefGoogle Scholar
  31. 31.
    Bronte V, Zanovello P. Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol. 2005;5:641–54.CrossRefGoogle Scholar
  32. 32.
    Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies. Immunol Rev. 2008;222:9–27.CrossRefGoogle Scholar
  33. 33.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.CrossRefGoogle Scholar
  34. 34.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–4.CrossRefGoogle Scholar
  35. 35.
    Maus MV, June CH. Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy. Clin Cancer Res. 2016 Apr 15;22(8):1875–84.  https://doi.org/10.1158/1078-0432.CCR-15-1433.CrossRefGoogle Scholar
  36. 36.
    Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity. 2016 Jun 21;44(6):1444–54.  https://doi.org/10.1016/j.immuni.2016.05.014.CrossRefGoogle Scholar
  37. 37.
    Stromnes IM, Schmitt TM, Hulbert A, Brockenbrough JS, Nguyen HN, Cuevas C, Dotson AM, Tan X, Hotes JL, Greenberg PD, Hingorani SR. T Cells Engineered against a Native Antigen Can Surmount Immunologic and Physical Barriers to Treat Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2015 Nov 9;28(5):638–52.  https://doi.org/10.1016/j.ccell.2015.09.022. Epub 2015 Oct 29.CrossRefGoogle Scholar
  38. 38.
    Harzstark AL, Small EJ. Immunotherapy for prostate cancer using antigen-loaded antigen-presenting cells: APC8015 (Provenge). Expert Opin Biol Ther. 2007;7:1275–80.CrossRefGoogle Scholar
  39. 39.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010 Jul 29;363(5):411–22.  https://doi.org/10.1056/NEJMoa1001294.
  40. 40.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 19;363(8):711–23.  https://doi.org/10.1056/NEJMoa1003466.CrossRefGoogle Scholar
  41. 41.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011 Jun 30;364(26):2517–26.  https://doi.org/10.1056/NEJMoa1104621.CrossRefGoogle Scholar
  42. 42.
    Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefGoogle Scholar
  43. 43.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefGoogle Scholar
  44. 44.
    Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.CrossRefGoogle Scholar
  45. 45.
    Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.CrossRefGoogle Scholar
  46. 46.
    Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.CrossRefGoogle Scholar
  47. 47.
    Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.CrossRefGoogle Scholar
  48. 48.
    Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.CrossRefGoogle Scholar
  49. 49.
    Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.CrossRefGoogle Scholar
  50. 50.
    Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;  https://doi.org/10.1056/NEJMoa1602252.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRefGoogle Scholar
  52. 52.
    Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;  https://doi.org/10.1056/NEJMoa1606774.CrossRefPubMedGoogle Scholar
  53. 53.
    Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007;13:2151–7.CrossRefGoogle Scholar
  54. 54.
    Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, Wamwea A, Bigelow E, Lutz E, Liu L, Yao S, Anders RA, Laheru D, Wolfgang CL, Edil BH, Schulick RD, Jaffee EM, Zheng L. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. 2015 Jan;38(1):1–11.  https://doi.org/10.1097/CJI.0000000000000062.CrossRefGoogle Scholar
  55. 55.
    Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.CrossRefGoogle Scholar
  56. 56.
    Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015 Apr 13;27(4):450–61.  https://doi.org/10.1016/j.ccell.2015.03.001.CrossRefGoogle Scholar
  57. 57.
    Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD, Han H, Ismail-Khan R, Minton S, Vahanian NN, Link C, Sullivan DM, Antonia S. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget. 2014 Sep 30;5(18):8136–46.Google Scholar
  58. 58.
    Murphy AG, Zheng L. Small molecule drugs with immunomodulatory effects in cancer. Hum Vaccin Immunother. 2015;11(10):2463–8.  https://doi.org/10.1080/21645515.2015.1057363.CrossRefGoogle Scholar
  59. 59.
    Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK, Clay TM. Depletion of human regulatory T cells specifically enhances antigen specific immune responses to cancer vaccines. Blood. 2008;112:610–8.CrossRefGoogle Scholar
  60. 60.
    Kondo H, Hazama S, Kawaoka T, Yoshino S, Yoshida S, Tokuno K, Takashima M, Ueno T, Hinoda Y, Oka M. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res. 2008;28:379–87.PubMedGoogle Scholar
  61. 61.
    Posey AD Jr, Clausen H, June CH. Distinguishing Truncated and Normal MUC1 Glycoform Targeting from Tn-MUC1-Specific CAR T Cells: Specificity Is the Key to Safety. Immunity. 2016 Nov 15;45(5):947–948.  https://doi.org/10.1016/j.immuni.2016.10.015.CrossRefGoogle Scholar
  62. 62.
    Morello A, Sadelain M, Adusumilli PS. Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discov. 2016 Feb;6(2):133–46.  https://doi.org/10.1158/2159-8290.CD-15-0583.
  63. 63.
    Gaudernack G. Prospects for vaccine therapy for pancreatic cancer. Best Pract Res Clin Gastroenterol. 2006;20:299–314.CrossRefGoogle Scholar
  64. 64.
    Arlen PM, Gulley JL, Madan RA, Hodge JW, Schlom J. Preclinical and clinical studies of recombinant poxvirus vaccines for carcinoma therapy. Crit Rev Immunol. 2007;27:451–62.CrossRefGoogle Scholar
  65. 65.
    Kaufman HL, Kim-Schulze S, Manson K, DeRaffele G, Mitcham J, Seo KS, Kim DW, Marshall J. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J Transl Med. 2007;5:60.CrossRefGoogle Scholar
  66. 66.
    Gilliam AD, Topuzov EG, Garin AM, Pulay I, Broome P, Watson SA, Rowlands B, Takhar A, Beckingham I. Randomised, double blind, placebo-controlled, multi-centre, group-sequential trial of G17DT for patients with advanced pancreatic cancer unsuitable or unwilling to take chemotherapy. In: ASCO annual meeting; 2004.CrossRefGoogle Scholar
  67. 67.
    Shapiro J, Marshall J, Karasek P, Figer A, Oettle H, Couture F, Jeziorski K, Broome P, Hawkins R. G17DT + gemcitabine [Gem] versus placebo + Gem in untreated subjects with locally advanced, recurrent, or metastatic adenocarcinoma of the pancreas: results of a randomized, double-blind, multinational, multicenter study. In: ASCO annual meeting; 2005.CrossRefGoogle Scholar
  68. 68.
    Gjertsen MK, Bakka A, Breivik J, Saeterdal I, Solheim BG, Soreide O, Thorsby E, Gaudernack G. Vaccination with mutant RAS peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet. 1995;346:1399–400.CrossRefGoogle Scholar
  69. 69.
    Gjertsen MK, Buanes T, Rosseland AR, Bakka A, Gladhaug I, Soreide O, Eriksen JA, Moller M, Baksaas I, Lothe RA, Saeterdal I, Gaudernack G. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer. 2001;92:441–50.CrossRefGoogle Scholar
  70. 70.
    Toubaji A, Achtar M, Provenzano M, Herrin VE, Behrens R, Hamilton M, Bernstein S, Venzon D, Gause B, Marincola F, Khleif SN. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother. 2008;57:1413–20.CrossRefGoogle Scholar
  71. 71.
    Bernhardt SL, Gjertsen MK, Trachsel S, Moller M, Eriksen JA, Meo M, Buanes T, Gaudernack G. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer. 2006;95:1474–82.CrossRefGoogle Scholar
  72. 72.
    Tseng JF, Willett CG, Fernandez-del Castillo C, Ryan DP, Clark JW, Zhu AX, Rattner DW, Winkelmann JL, Warshaw AL. Patients undergoing treatment for pancreatic adenocarcinoma can mount an effective immune response to vaccinations. Pancreatology. 2005;5:67–74.CrossRefGoogle Scholar
  73. 73.
    Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, Coxon F, Ross P, Madhusudan S, Roques T, Cunningham D, Falk S, Wadd N, Harrison M, Corrie P, Iveson T, Robinson A, McAdam K, Eatock M, Evans J, Archer C, Hickish T, Garcia-Alonso A, Nicolson M, Steward W, Anthoney A, Greenhalf W, Shaw V, Costello E, Naisbitt D, Rawcliffe C, Nanson G, Neoptolemos J. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014 Jul;15(8):829–40.  https://doi.org/10.1016/S1470-2045(14)70236-0.CrossRefGoogle Scholar
  74. 74.
    Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, Finn OJ, Ramanathan RK. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 2008;6(B):955–964.Google Scholar
  75. 75.
    Yanagmoto H, Satoi S, Mine T, Tanaka K, Yamada A, Oka M, Itoh K. A multicenter phase I/II study of gemcitabine and personalized peptide vaccination combination therapy for metastatic pancreatic cancer patients. In: ASCO annual meeting; 2008.CrossRefGoogle Scholar
  76. 76.
    Maki RG, Livingston PO, Lewis JJ, Janetzki S, Klimstra D, Desantis D, Srivastava PK, Brennan MF. A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci. 2007;52:1964–72.CrossRefGoogle Scholar
  77. 77.
    Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC, Lillemoe KD, O’Reilly S, Abrams RA, Pardoll DM, Cameron JL, Yeo CJ. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol. 2001;19:145–56.CrossRefGoogle Scholar
  78. 78.
    Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, Sugar E, Piantadosi S, Cameron JL, Solt S, Onners B, Tartakovsky I, Choi M, Sharma R, Illei PB, Hruban RH, Abrams RA, Le D, Jaffee E, Laheru D. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011;253(2):328–35.CrossRefGoogle Scholar
  79. 79.
    Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC, Huang LQ, Laheru DA, Goggins M, Hruban RH, Jaffee EM. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med. 2004;200:297–306.CrossRefGoogle Scholar
  80. 80.
    Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, Tartakovsky I, Nemunaitis J, Le D, Sugar E, Hege K, Jaffee E. Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res. 2008;14:1455–63.CrossRefGoogle Scholar
  81. 81.
    Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM, Laheru DA. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013 Sep;36(7):382–9.  https://doi.org/10.1097/CJI.0b013e31829fb7a2.CrossRefGoogle Scholar
  82. 82.
    Hardacre JM, Mulcahy M, Small W, Talamonti M, Obel J, Krishnamurthi S, Rocha-Lima CS, Safran H, Lenz HJ, Chiorean EG. Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: a phase 2 study. J Gastrointest Surg. 2013 Jan;17(1):94–100.CrossRefGoogle Scholar
  83. 83.
    Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, Morse M, Zeh H, Cohen D, Fine RL, Onners B, Uram JN, Laheru DA, Lutz ER, Solt S, Murphy AL, Skoble J, Lemmens E, Grous J, Dubensky T Jr, Brockstedt DG, Jaffee EM. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015 Apr 20;33(12):1325–33.  https://doi.org/10.1200/JCO.2014.57.4244.CrossRefGoogle Scholar
  84. 84.
    Hassan R, Thomas A, Alewine C, Le DT, Jaffee EM, Pastan I.Mesothelin Immunotherapy for Cancer: Ready for Prime Time? J Clin Oncol. 2016 Dec;34(34):4171–4179.CrossRefGoogle Scholar
  85. 85.
    Argani P, Rosty C, Reiter RE, Wilentz RE, Murugesan SR, Leach SD, Ryu B, Skinner HG, Goggins M, Jaffee EM, Yeo CJ, Cameron JL, Kern SE, Hruban RH. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 2001;61:4320–4.PubMedGoogle Scholar
  86. 86.
    Foley K, Kim V, Jaffee E, Zheng L. Current progress in immunotherapy for pancreatic cancer. Cancer Lett. 2016 Oct 10;381(1):244–51.  https://doi.org/10.1016/j.canlet.2015.12.020.CrossRefGoogle Scholar
  87. 87.
    Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, Solt S, Dorman A, Wamwea A, Yager A, Laheru D, Wolfgang CL, Wang J, Hruban RH, Anders RA, Jaffee EM, Zheng L. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res. 2014 Jul;2(7):616–31.  https://doi.org/10.1158/2326-6066.CIR-14-0027.CrossRefGoogle Scholar
  88. 88.
    Soares KC, Rucki AA, Kim V, Foley K, Solt S, Wolfgang CL, Jaffee EM, Zheng L. TGF-β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner. Oncotarget. 2015 Dec 15;6(40):43005–15.  https://doi.org/10.18632/oncotarget.5656
  89. 89.
    Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med. 2005;201:1591–602.CrossRefGoogle Scholar
  90. 90.
    Schlom J, Arlen PM, Gulley JL. Cancer vaccines: moving beyond current paradigms. Clin Cancer Res. 2007;13:3776–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Sidney Kimmel Cancer CenterJohns Hopkins University School of MedicineBaltimoreUSA

Section editors and affiliations

  • John Neoptolemos
    • 1
  • Raul A. Urrutia
    • 2
  • James L. Abbruzzese
    • 3
  • Markus W. Büchler
    • 4
  • Thilo Hackert
    • 5
  1. 1.Division of Surgery and OncologyUniversity of LiverpoolLiverpoolUK
  2. 2.Mayo Clinic Cancer CenterMayo ClinicRochesterUSA
  3. 3.Duke University Medical CenterDurhamUSA
  4. 4.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
  5. 5.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations