Skip to main content

Variational Methods for Continuum Models of Granular Materials

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Energy methods for granular materials;Variational methods in granular micromechanics

Definitions

Continuum models of granular materials aim to describe their behavior in average sense while exploiting the paradigm of continuum mechanics. For granular materials, however, success of these continuum models is predicated upon how they treat grain interactions and grain kinematics within the formulation.

Continuum Models of Granular Materials

Continuum approaches can be more efficient and desirable for granular mechanics problems that require a macro-scale description involving a large number of grains (>106grains) with varying sizes and bulk and surface characteristics packed in a disordered state. In these cases, an average behavior is sufficient, and it is not necessary to obtain the trajectory of each grain as well as the spatial distributions of deformation energies at the grain-scales. For such problems, the discrete approach may be constrained, not only by its...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Chang CS, Gao J (1995) 2nd-Gradient constitutive theory for granular material with random packing structure. Int J Solids Struct 32:2279–2293

    Article  Google Scholar 

  • Chang C, Gao J (1996) Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech 115:213–229

    Article  Google Scholar 

  • Chang CS, Liao CL (1994) Estimates of elastic modulus for media of randomly packed granules. Appl Mech Rev 47:197–206

    Article  Google Scholar 

  • Chang CS, Misra A (1989) Theoretical and experimental-study of regular packings of granules. J Eng Mech ASCE 115:704–720

    Article  Google Scholar 

  • Chang CS, Misra A (1990) Packing structure and mechanical-properties of granulates. J Eng Mech ASCE 116:1077–1093

    Article  Google Scholar 

  • Chang C, Matsushima T, Lee X (2003) Heterogeneous strain and bonded granular structure change in triaxial specimen studied by computer tomography. J Eng Mech 129:1295–1307

    Article  Google Scholar 

  • Clausius R (1870) XVI. On a mechanical theorem applicable to heat. Lond Edinb Dublin Philos Mag J Sci 40:122–127

    Article  Google Scholar 

  • Cosserat E, Cosserat F (1909) Theory of deformable bodies. Scientific Library A. Hermann and Sons, Paris

    MATH  Google Scholar 

  • dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S (2014) The complete works of Gabrio Piola: volume I commented English translation – English and Italian edition. Springer, Cham, Switzerland

    Google Scholar 

  • Digby PJ (1981) The effective elastic moduli of porous granular rocks. J Appl Mech 48:803–808

    Article  Google Scholar 

  • Duffy J, Mindlin RD (1957) Stress-strain relations and vibrations of a granular medium. J Appl Mech 24:585–593

    MathSciNet  Google Scholar 

  • Eringen A (1999) Microcontinuum field theories I: foundations and solids. Springer, New York

    Book  Google Scholar 

  • Fleischmann J, Drugan W, Plesha M (2013) Direct micromechanics derivation and DEM confirmation of the elastic moduli of isotropic particulate materials: part II particle rotation. J Mech Phys Solids 61:1585–1599

    Article  MathSciNet  Google Scholar 

  • Germain P (1973) Method of virtual power in continuum mechanics. 2. Microstructure. SIAM J Appl Math 25:556–575. https://doi.org/10.1137/0125053

    Article  MATH  Google Scholar 

  • Goddard J (2008) From granular matter to generalized continuum. In: Mathematical models of granular matter. Springer, Dordrecht, Netherlands, pp 1–22

    Google Scholar 

  • Goddard JD (2014) Continuum modeling of granular media. Appl Mech Rev 66:050801

    Article  Google Scholar 

  • Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray [mu] CT and volumetric digital image correlation. Géotechnique 60:315

    Article  Google Scholar 

  • Hara G (1935) Theorie der akustischen Schwingungsausbreitung in gekornten Substanzen und experimentelle Untersuchungen an Kohlepulver. Elektr Nachr Tech 12:191–200

    Google Scholar 

  • Jenkins J, Koenders M (2004) The incremental response of random aggregates of identical round particles. Eur Phys J E 13:113–123

    Article  Google Scholar 

  • Jia H, Misra A, Poorsolhjouy P, Liu C (2017) Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics. Mater Des 115:422–432. https://doi.org/10.1016/j.matdes.2016.11.059

    Article  Google Scholar 

  • Kruyt N, Rothenburg L (2004) Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech Mater 36:1157–1173

    Article  Google Scholar 

  • Liao CL, Chang TP, Young DH, Chang CS (1997) Stress-strain relationship for granular materials based on the hypothesis of best fit. Int J Solids Struct 34:4087–4100. https://doi.org/10.1016/S0020-7683(97)00015-2

    Article  MATH  Google Scholar 

  • Magoariec H, Danescu A, Cambou B (2008) Nonlocal orientational distribution of contact forces in granular samples containing elongated particles. Acta Geotech 3:49–60

    Article  Google Scholar 

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Volume Monograph, Engle Cliffs, NJ

    Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  Google Scholar 

  • Misra A (1998) Particle kinematics in sheared rod assemblies. In: Physics of dry granular media. Berlin, Springer, pp 261–266

    Chapter  Google Scholar 

  • Misra A (2002) Experimental micromechanics of rod assemblies. Paper presented at the 15th ASCE engineering mechanics conference, New York

    Google Scholar 

  • Misra A, Chang CS (1993) Effective elastic moduli of heterogeneous granular solids. Int J Solids Struct 30:2547–2566

    Article  Google Scholar 

  • Misra A, Jiang H (1997) Measured kinematic fields in the biaxial shear of granular materials. Comput Geotech 20:267–285. https://doi.org/10.1016/S0266-352x(97)00006-2

    Article  Google Scholar 

  • Misra A, Poorsolhjouy P (2015a) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math Mech Solids. https://doi.org/10.1177/1081286515576821

  • Misra A, Poorsolhjouy P (2015b) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math Mech Complex Syst 3:285–308

    Article  MathSciNet  Google Scholar 

  • Misra A, Poorsolhjouy P (2016a) Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics. J Eng Mech 143:C4016005

    Article  Google Scholar 

  • Misra A, Poorsolhjouy P (2016b) Granular micromechanics based micromorphic model predicts frequency band gaps. Contin Mech Thermodyn 28:215–234. https://doi.org/10.1007/s00161-015-0420-y

    Article  MathSciNet  MATH  Google Scholar 

  • Misra A, Poorsolhjouy P (2016c) Granular micromechanics model of anisotropic elasticity derived from Gibbs potential. Acta Mech 227:1393–1413

    Article  Google Scholar 

  • Misra A, Poorsolhjouy P (2017) Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech Res Commun 81:1–6. https://doi.org/10.1016/j.mechrescom.2017.01.006

    Article  Google Scholar 

  • Misra A, Singh V (2014a) Nonlinear granular micromechanics model for multi-axial rate-dependent behavior. Int J Solids Struct 51:2272–2282. https://doi.org/10.1016/j.ijsolstr.2014.02.034

    Article  Google Scholar 

  • Misra A, Singh V (2014b) Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin Mech Thermodyn 27:787–817. https://doi.org/10.1007/s00161-014-0360-y

    Article  MathSciNet  MATH  Google Scholar 

  • Misra A, Yang Y (2010) Micromechanical model for cohesive materials based upon pseudo-granular structure. Int J Solids Struct 47:2970–2981. https://doi.org/10.1016/j.ijsolstr.2010.07.002

    Article  MATH  Google Scholar 

  • Misra A, Singh V, Darabi M (2017) Asphalt pavement rutting simulated using granular micromechanics based rate dependent damage-plasticity model. Int J Pavement Eng. https://doi.org/10.1080/10298436.2017.1380804

  • Nicot F, Darve F, Group R (2005) A multi-scale approach to granular materials. Mech Mater 37:980–1006

    Google Scholar 

  • Placidi L, Barchiesi E (2018) Energy approach to brittle fracture in strain-gradient modelling. Proc R Soc A 474:20170878

    Article  MathSciNet  Google Scholar 

  • Placidi L, Barchiesi E, Misra A (2018a) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Complex Syst 6:77–100

    Article  MathSciNet  Google Scholar 

  • Placidi L, Misra A, Barchiesi E (2018b) Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin Mech Thermodyn 1–21. https://doi.org/10.1007/s00161-018-0693-z

  • Placidi L, Misra A, Barchiesi E (2018c) Two-dimensional strain gradient damage modeling: a variational approach. Z Angew Math Phys 69:56

    Article  MathSciNet  Google Scholar 

  • Poorsolhjouy P, Misra A (2017) Effect of intermediate principal stress and loading-path on failure of cementitious materials using granular micromechanics. Int J Solids Struct 108:139–152. https://doi.org/10.1016/j.ijsolstr.2016.12.005

    Article  Google Scholar 

  • Richefeu V, Combe G, Viggiani G (2012) An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotech Lett 2:113–118. https://doi.org/10.1680/geolett.12.00029

    Article  Google Scholar 

  • Romeo M (2018) Microcontinuum approach to electromagneto-elasticity in granular materials. Mech Res Commun 91:33

    Article  Google Scholar 

  • Rothenburg L, Selvadurai A (1981) A micromechanical definition of the Cauchy stress tensor for particulate media. Elsevier, Amsterdam

    Google Scholar 

  • Sibille L, Froiio F (2007) A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granul Matter 9:183–193

    Article  Google Scholar 

  • Suiker ASJ, de Borst R, Chang CS (2001) Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mech 149:161–180

    Article  Google Scholar 

  • Triantafyllidis N, Bardenhagen S (1993) On higher-order gradient continuum-theories in 1-D nonlinear elasticity – derivation from and comparison to the corresponding discrete models. J Elast 33:259–293

    Article  MathSciNet  Google Scholar 

  • Turco E (2018) In-plane shear loading of granular membranes modeled as a Lagrangian assembly of rotating elastic particles. Mech Res Commun 92:61

    Article  Google Scholar 

  • Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solids 35:213–226

    Article  Google Scholar 

  • Yang Y, Misra A (2012) Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int J Solids Struct 49:2500–2514. https://doi.org/10.1016/j.ijsolstr.2012.05.024

    Article  Google Scholar 

  • Zhao C-F, Yin Z-Y, Misra A, Hicher P-Y (2018) Thermomechanical formulation for micromechanical elasto-plasticity in granular materials. Int J Solids Struct 138:64–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Misra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Misra, A., Placidi, L., Turco, E. (2019). Variational Methods for Continuum Models of Granular Materials. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_343-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_343-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics