Skip to main content
Log in

Nonlocal orientational distribution of contact forces in granular samples containing elongated particles

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In this paper we introduce the branch tensor as an internal variable able to account for the structural anisotropy of a granular sample. The distribution of averaged contact forces is assumed to depend not only on the macroscopic stress and the local orientation, but also on the value of the fabric tensor. In contrast to previous work, including the fabric tensor has the crucial advantage that accounts for all relative positions between interacting particles, through the average value of the branch tensor. Based on a classical representation result, we propose an identification procedure that uses information obtained from both isotropic and anisotropic configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In this sum external forces should also be accounted for.

  2. We use aspect ratio to denote maxϕ (diam(ϕ)/diam(ϕ + π/2)) where diam(ϕ) means the diameter of the particle in the ϕ-direction.

  3. We provide in the appendix the main details of this result.

  4. This dispersion is given on the basis of the diameter of the smallest disk containing a particle.

  5. For the rest of the paper, we shall use the classical convention in solid mechanics: a compression stress is negative.

  6. In the continuum limit d is dependent of θ but the first term of its Fourier series is what we denote here \(\overline{d}.\)

  7. Actually, Fig. 4 exhibits R35 to be the most anisotropic configuration; this configuration will nevertheless not be used in the following because it is the only configuration that corresponds to the dilatancy phase of the material behavior.

References

  1. Cambou B, Jean M (2001) Micromécanique des matériaux granulaires, Hermes Science

  2. Cambou B, Magoariec H, Nouguier C (2006) Influence of the particle shape on the distribution of contact forces in granular materials, communication at 6 th European Solid Mechanics Conference (ESMC-2006), Budapest (2006)

  3. Chang CS, Hicher PY (2005) An elasto-plastic model for granular materials with microstructural consideration. Int J Solids Struct 42:4258–4277

    Article  MATH  Google Scholar 

  4. Dedecker F (1999) Changements d’échelle dans les milieux granulaires à interactions complexes, Ph.D. thesis, Ecole Centrale de Lyon

  5. Delyon F, Dufresne D, Lévy YE (1990) Physique et génie civil: deux illustrations simples. Ann des Ponts et Chaussées 53–54:22–29

    Google Scholar 

  6. Kruyt NP (2003) Contact forces in anisotropic frictional granular materials. Int J Solids Struct 40:3537–3556

    Article  MATH  Google Scholar 

  7. Li XS, Dafalias YF (2002) Constitutive modelling of inherently anisotropic sand behaviour. J Geotech Environ Eng 128:868–880

    Article  Google Scholar 

  8. Mahboubi A (1995) Contribution à l’étude micromécanique du comportement des matériaux granulaires par homogénéisation et approche numérique, Ph.D. thesis, Ecole Centrale de Lyon

  9. Mehrabadi MM, Nemat-Nasser S, Oda M (1982) On statistical description of stress and fabric in granular materials. Int J Numer Anal Methods Geomech 6:95–108

    Article  MATH  MathSciNet  Google Scholar 

  10. Nemat-Nasser S, Zhang J (2002) Constitutive relations for cohesionless frictional material. Int J Plast 18:531–547

    Article  Google Scholar 

  11. Nouguier-Lehon C, Vincens E, Cambou B (2005) Structural changes in granular materials: the case of irregular polygonal particles. Int J Solids Struct 42:6356–6375

    Article  MATH  Google Scholar 

  12. Oda M, Nemat-Nasser S, Mehrabadi MM (1982) A statistical study of fabric in a randon assembly of spherical granules. Int J Numer Anal Methods Geomech 6:77–94

    Article  MATH  MathSciNet  Google Scholar 

  13. Sidoroff F, Cambou B, Mahboubi A (1993) Contact forces in granular media. Mech Mater 16:83–89

    Article  Google Scholar 

  14. Tollenaere H, Caillerie D (1998) Continuous modeling of lattice structures by homogeneization. Adv Eng Softw 29:699–705

    Article  Google Scholar 

  15. Wang CC (1970) A new representation theorem for isotropic functions: An answer to Prof GF Smith criticism of my papers on representations for isotropic functions. Arch Ration Mech Anal 36:166–223

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge detailed numerical results for biaxial tests, provided to us by Cécile Nouguier and previously published in [11].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Magoariec.

Appendix. Technical details of the result in (12)

Appendix. Technical details of the result in (12)

This result is obtained in three steps using a classical representation result for isotropic functions due to Wang [15].

1.1 (a) General form for f

Using the general result in [15] we find that the general form of an isotropic function is a linear combination of vector-valued invariants below

$$ {\user2{n}},\quad{\varvec{\Upsigma}}{\user2{n}},\quad {\user2{H}}{\user2{n}},\quad{\varvec{\Upsigma}}{\user2{H}}{\user2{n}}, \quad {\user2{H}}{\varvec{\Upsigma}}{\user2{n}}, \quad{\varvec{\Upsigma}}^2{\user2{n}},\quad {\user2{H}}^2{\user2{n}} $$
(35)

with coefficients depending on the following combinations

$$ \begin{aligned} \,&\hbox{tr}({\user2{H}}),\; {\user2{n}}\cdot{\varvec{\Upsigma}}{\user2{n}},\; {\user2{n}}\cdot{\user2{H}}{\user2{n}},\; \hbox{tr}({\varvec{\Upsigma}}),\; \hbox{tr}({\user2{H}}{\varvec{\Upsigma}}),\;{\varvec{\Upsigma}}{\user2{n}}\cdot{\user2{H}}{\user2{n}}\\ \,&\hbox{tr}({\varvec{\Upsigma}}^2),\ \hbox{tr}({\varvec{\Upsigma}}^3),\; \hbox{tr}({\user2{H}}^2),\ \hbox{tr}({\user2{H}}^3),\; \hbox{tr}({\user2{H}}^2{\varvec{\Upsigma}}),\\ \,&\hbox{tr}({\user2{H}}{\varvec{\Upsigma}}^2),\; \hbox{tr}({\user2{H}}^2{\varvec{\Upsigma}}^2), {\user2{n}}\cdot{\varvec{\Upsigma}}^2{\user2{n}},\; {\user2{n}}\cdot{\user2{H}}^2{\user2{n}}. \end{aligned} $$
(36)

By inspection in (36) only the first line contains terms at most linear in \({\varvec{\Upsigma}}\) and H. Moreover, products between scalar-valued and vector-valued invariants lead to a general form for f as

$${{\user2{f}}}({\varvec{\Upsigma}},{\user2{H}},{\user2{n}})=\sum_{i= 1}^{19}a_i{{\user2{f}}}_i({\varvec{\Upsigma},{\user2{H}}},{\user2{n}}) $$
(37)

where a i  ∈ \(\mathbb{R}\) and the list of vector-valued invariants f i is given by:

$$\begin{array}{lll}{{\user2{f}}}_{1}&={\user2{n}},&{{\user2{f}}}_{10}={\user2{H}}{\user2{n}}, \\{{\user2{f}}}_2&=\hbox{tr}({\varvec{\Upsigma}}){\user2{n}},&{{\user2{f}}}_{11}=\hbox{tr}({\varvec{\Upsigma}}){\user2{H}}{\user2{n}}, \\{{\user2{f}}}_3&= \hbox{tr}({\varvec{\Upsigma}})\hbox{tr}({\user2{H}}){\user2{n}}, &{{\user2{f}}}_{12}=({\user2{n}}\cdot{\varvec{\Upsigma}}{\user2{n}}){\user2{H}}{\user2{n}}, \\{{\user2{f}}}_4&= \hbox{tr}({\varvec{\Upsigma}})({\user2{n}}\cdot{\user2{H}}{\user2{n}}){\user2{n}},& {{\user2{f}}}_{13}={\varvec{\Upsigma}}{\user2{n}}, \\{{\user2{f}}}_5&=({\user2{n}}\cdot{\varvec{\Upsigma}}{\user2{n}}){\user2{n}},&{{\user2{f}}}_{14}=\hbox{tr}({\user2{H}}){\varvec{\Upsigma}}{\user2{n}}, \\{{\user2{f}}}_6&=\hbox{tr}({\user2{H}})({\user2{n}}\cdot{\varvec{\Upsigma}}{\user2{n}}){ \user2{n}}, & {{\user2{f}}}_{15}=({\user2{n}}\cdot{\user2{H}}{\user2{n}}){\varvec{\Upsigma}}{\user2{n}}, \\{{\user2{f}}}_7&=({\user2{n}}\cdot{\varvec{\Upsigma}}{\user2{n}})({\user2{n}}\cdot{{\mathbf{H}}}{\user2{n}}){\user2{n}},&{{\user2{f}}}_{16}={\varvec{\Upsigma}} {\user2{H}}{\user2{n}}, \\{{\user2{f}}}_8&=\hbox{tr}({\varvec{\Upsigma}}{\user2{H}}){\user2{n}}, & {{\user2{f}}}_{17}={\user2{H}}{\varvec{\Upsigma}}{\user2{n}},\\ {{\user2{f}}}_9&=({\user2{H}}{\user2{n}}\cdot{\varvec{\Upsigma}}{\user2{n}}){\user2{n}}, &{{\user2{f}}}_{18}=\hbox{tr}({\user2{H}}){\user2{n}}, \\&&{{\user2{f}}}_{19}= ({\user2{H}}{\user2{n}}\cdot{\user2{n}}){\user2{n}}. \end{array} $$
(38)

1.2 (b) Restrictions due to consistency relation

In (37) the a i are restricted by the consistency condition (8); identification for symmetric part gives

$$ \begin{aligned} &a_1=0,\\ &a_5=-4a_2\\ &a_9=-4a_8-\frac{1}{2}a_7-a_6-a_4-4a_3,\\ &a_{12}=-4a_{11}-\frac{1}{2} a_7-a_6-3a_4-4a_3,\\ &a_{13} =1+2a_2,\\ &a_{15} =-4a_{14}-4a_3-a_4-3a_6-\frac{1}{2} a_7,\\ &a_{17} =-a_{16}+2a_{14}+2a_{11}+2a_8+\frac{1}{2}a_7 \\ &\quad + 3a_6+3a_4+8a_3,\\ &a_{18} = \frac{1}{2} a_{10},\\ &a_{19} =-2a_{10}. \end{aligned} $$
(39)

and identification of the skew-symmetric part leads to

$$ a_{16}=2a_{14}+a_8+\frac{1}{4}a_7+2a_6+a_4+4a_3. $$
(40)

We shall denote by g i the factors in f of a i . Relations (39) and (40) reduce the number of coefficients a i to nine, for iI = {2,3,4,6,7,8,10,11,14}.

1.3 (c) Linear independence of remaining invariants

Using g i we are lead to

$$ {{\user2{f}}}={\varvec{\Upsigma}}{\user2{n}}+\sum_{i\in I} a_i{\user2{g}}_i. $$
(41)

The following results are straightforward

  • If

    $$ a_2{\user2{g}}_2+a_3{\user2{g}}_3+ a_4{\user2{g}}_4+a_6{\user2{g}}_6+a_7{\user2{g}}_7+a_{10}{\user2{g}} _{10}={\user2{0}} $$

    for any \({\varvec{\Upsigma}}\) and any H then a 2 = a 3 = a 4 = a 6 = a 7 = a 10 = 0.

  • We have for any \({\varvec{\Upsigma}}\) and H:

    $$ -{\user2{g}}_3+{\user2{g}}_4+{\user2{g}}_6+{\user2{g}}_8= {\user2{0}},\quad {\user2{g}}_{\user2{4}}={\user2{g}}_{11},\quad {\user2{g}}_6={\user2{g}}_{14}. $$
  • One can easily check that

    $$ {\user2{I}}_2:={\user2{g}}_2=2{\varvec{\Upsigma}}{\user2{n}}+ (\hbox{tr}{\varvec{\Upsigma}}){\user2{n}}- 4({\user2{n}}\cdot({\varvec{\Upsigma}}{\user2{n}})){\user2{n}}, $$

    and

    $$ {\user2{g}}_{10}= 2{\user2{H}}{\user2{n}}+(\hbox{tr}{\user2{H}}){\user2{n}}- 4({\user2{n}}\cdot({\user2{H}}{\user2{n}})){\user2{n}}, $$

    while the four remaining invariants can be combined to give

    $$ \begin{aligned} {\user2{I}}_3&:={\user2{g}}_3-4{\user2{g}}_4,\quad {\user2{I}}_4:={\user2{g}}_3- 4{\user2{g}}_6, \\ {\user2{I}}_5&:={\user2{g}}_3-8{\user2{g}}_7,\quad {\user2{I}}_6:={\user2{g}}_3-16{\user2{g}}_7, \end{aligned} $$

    thus leading finally to (12)–(17).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magoariec, H., Danescu, A. & Cambou, B. Nonlocal orientational distribution of contact forces in granular samples containing elongated particles. Acta Geotech. 3, 49–60 (2008). https://doi.org/10.1007/s11440-007-0050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-007-0050-z

Keywords

Navigation