Skip to main content
Log in

Granular micromechanics model of anisotropic elasticity derived from Gibbs potential

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a Gibbs potential-based granular micromechanics approach capable of modeling materialswith complete anisotropy. The deformation energy of each grain–pair interaction is taken as a function of the inter-granular forces. The overall classical Gibbs potential of a material point is then defined as the volume average of the grain–pair deformation energy. As a first-order theory, the inter-granular forces are related to the Cauchy stress tensor using a modified static constraint that incorporates directional distribution of the grain–pair interactions. Further considering the conjugate relationship of the macroscale strain tensor and the Cauchy stress, a relationship between inter-granular displacement and the strain tensor is derived. To establish the constitutive relation, the inter-granular stiffness coefficients are introduced considering the conjugate relation of inter-granular displacement and forces. Notably, the inter-granular stiffness introduced in this manner is by definition different from that of the isolated grain–pair interactive. The integral form of the constitutive relation is then obtained by defining two directional density distribution functions; one related to the average grain–scale combined mechanical–geometrical properties and the other related to purely geometrical properties. Finally, as the main contribution of this paper, the distribution density function is parameterized using spherical harmonics expansion with carefully selected terms that has the capability of modeling completely anisotropic (triclinic) materials. By systematic modification of this distribution function, different elastic symmetries ranging from isotropic to completely anisotropic (triclinic) materials are modeled. As a comparison, we discuss the results of the present method with those obtained using a kinematic assumption for the case of isotropy and transverse isotropy, wherein it is found that the velocity of surface quasi-shear waves can show different trends for the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayuk I.O., Ammerman M., Chesnokov E.M.: Elastic moduli of anisotropic clay. Geophysics 72(5), D107–D117 (2007)

    Article  Google Scholar 

  2. Graham J., Houlsby G.: Anisotropic elasticity of a natural clay. Géotechnique 33(2), 165–180 (1983)

    Article  Google Scholar 

  3. Li X.S., Dafalias Y.F.: Constitutive modeling of inherently anisotropic sand behavior. J. Geotech. Geoenviron. Eng. 128(10), 868–880 (2002)

    Article  Google Scholar 

  4. Ochiai H., Lade P.V.: Three-dimensional behavior of sand with anisotropic fabric. J. Geotech. Eng. 109(10), 1313–1328 (1983)

    Article  Google Scholar 

  5. Sayers C., Kachanov M.: Microcrack-induced elastic wave anisotropy of brittle rocks. J. Geophys. Research (All Ser.) 100, 4149–4149 (1995)

    Article  Google Scholar 

  6. Thomsen L.: Elastic anisotropy due to aligned cracks in porous rock. Geophys. Prospect. 43(6), 805–829 (1995)

    Article  MathSciNet  Google Scholar 

  7. Arthur J., Chua K., Dunstan T.: Induced anisotropy in a sand. Geotechnique 27(1), 13–30 (1977)

    Article  Google Scholar 

  8. Dewhurst D.N., Siggins A.F.: Impact of fabric, microcracks and stress field on shale anisotropy. Geophys. J. Int. 165(1), 135–148 (2006)

    Article  Google Scholar 

  9. Horii H., Nemat-Nasser S.: Overall moduli of solids with microcracks: load-induced anisotropy. J. Mech. Phys. Solids 31(2), 155–171 (1983)

    Article  MATH  Google Scholar 

  10. Jiang G.-L., Tatsuoka F., Flora A., Koseki J.: Inherent and stress-state-induced anisotropy in very small strain stiffness of a sandy gravel. Geotechnique 47(3), 509–521 (1997)

    Article  Google Scholar 

  11. Johnson D., Schwartz L., Elata D., Berryman J., Hornby B., Norris A.: Linear and nonlinear elasticity of granular media: stress-induced anisotropy of a random sphere pack. J. Appl. Mech. 65(2), 380–388 (1998)

    Article  Google Scholar 

  12. Wong R., Arthur J.: Induced and inherent anisotropy in sand. Geotechnique 35(4), 471–481 (1985)

    Article  Google Scholar 

  13. Placidi L., Greve R., Seddik H., Faria S.H.: Continuum-mechanical, anisotropic flow model for polar ice masses, based on an anisotropic flow enhancement factor. Contin. Mech. Thermodyn. 22(3), 221–237 (2010)

    Article  MATH  Google Scholar 

  14. Placidi L., Hutter K.: An anisotropic flow law for incompressible polycrystalline materials. Zeitschrift für angewandte Mathematik und Physik ZAMP 57(1), 160–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang C.S., Misra A.: Packing structure and mechanical-properties of granulates. J. Eng. Mech. ASCE 116(5), 1077–1093 (1990)

    Article  Google Scholar 

  16. Navier C.L.: Sur les lois de l’equilibre et du mouvement des corps solides elastiques. Memoire de l’Academie Royale de Sciences 7, 375–393 (1827)

    Google Scholar 

  17. Cauchy, A.-L.: Sur l’equilibre et le mouvement d’un systeme de points materiels sollicites par des forces d’attraction ou de repulsion mutuelle. Excercises de Mathematiques 3, 188–212 (1826–1830)

  18. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn., 1–20 (2015). doi:10.1007/s00161-015-0420-y

  19. Misra, A., Ching,W.Y.: Theoretical nonlinear response of complex single crystal under multi-axial tensile loading. Sci. Rep. 3, 1488 (2013). doi:10.1038/srep01488

  20. Greene M.S., Li Y., Chen W., Liu W.K.: The archetype-genome exemplar in molecular dynamics and continuum mechanics. Comput. Mech. 53(4), 687–737 (2013). doi:10.1007/s00466-013-0925-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Solar M., Meyer H., Gauthier C., Fond C., Benzerara O., Schirrer R., Baschnagel J.: Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations. Phys. Rev. E 85(2), 1–14 (2012). doi:10.1103/Physreve.85.021808

    Article  Google Scholar 

  22. Silling S.A., Epton M., Weckner O., Xu J., Askari E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mech. Math. Solids (2013). doi:10.1177/1081286513509811

  24. Tadmor E.B., Miller R.E.: Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  25. Bazant Z.P., Prat P.C.: Microplane model for Brittle-plastic material. 1. Theory. J. Eng. Mech. ASCE 114(10), 1672–1687 (1988)

    Article  Google Scholar 

  26. Gao H.J., Klein P.: Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J. Mech. Phys. Solids 46(2), 187–218 (1998)

    Article  MATH  Google Scholar 

  27. Bazant Z.P., Caner F.C.: Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. I: theory. J. Eng. Mech. ASCE 131(1), 31–40 (2005). doi:10.1061/(Asce)0733-9399(2005)131:(31)

    Article  Google Scholar 

  28. Chang C., Gao J.: Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech. 115(1–4), 213–229 (1996)

    Article  MATH  Google Scholar 

  29. Taylor G.I.: Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)

    Google Scholar 

  30. Kruyt N., Rothenburg L.: Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech. Mater. 36(12), 1157–1173 (2004)

    Article  Google Scholar 

  31. Nicot F., Darve F., Group R.: A multi-scale approach to granular materials. Mech. Mater. 37(9), 980–1006 (2005)

    Google Scholar 

  32. Tordesillas A., Shi J., Tshaikiwsky T.: Stress–dilatancy and force chain evolution. Int. J. Numer. Anal. Methods Geomech. 35(2), 264–292 (2011)

    Article  MATH  Google Scholar 

  33. Chang C.S., Misra A., Acheampong K.: Elastoplastic deformation for particulates with frictional contacts. J. Eng. Mech. ASCE 118(8), 1692–1707 (1992). doi:10.1061/(Asce)0733-9399(1992)118:8(1692)

    Article  Google Scholar 

  34. Misra A., Chang C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)

    Article  MATH  Google Scholar 

  35. Nguyen N.S., Magoariec H., Cambou B.: Local stress analysis in granular materials at a mesoscale. Int. J. Numer. Anal. Methods Geomech. 36(14), 1609–1635 (2012)

    Article  Google Scholar 

  36. Nguyen N.-S., Magoariec H., Cambou B., Danescu A.: Analysis of structure and strain at the meso-scale in 2D granular materials. Int. J. Solids Struct. 46(17), 3257–3271 (2009)

    Article  MATH  Google Scholar 

  37. Misra A., Poorsolhjouy P.: Micro–macro scale instability in 2D regular granular assemblies. Contin. Mech. Thermodyn. 27(1-2), 63–82 (2013). doi:10.1007/s00161-013-0330-9

    Article  MathSciNet  Google Scholar 

  38. Brocca M., Bažant Z.P., Daniel I.M.: Microplane model for stiff foams and finite element analysis of sandwich failure by core indentation. Int. J. Solids Struct. 38(44), 8111–8132 (2001)

    Article  MATH  Google Scholar 

  39. Prat, P., Gens, A.: Microplane formulation for quasibrittle materials with anisotropy and damage. In: Bazant, Z.B., Bittnar, Z., Jirasek, M., Mazars, J. (eds.) Fracture and Damage in Quasibrittle Structures: Experiment, modeling and computation, p. 67 (2004)

  40. Cusatis G., Beghini A., Bažant Z.P.: Spectral stiffness microplane model for quasibrittle composite laminates—Part I: theory. J. Appl. Mech. 75(2), 021009 (2008)

    Article  Google Scholar 

  41. Gassmann F.: Elastic waves through a packing of spheres. Geophysics 16(4), 673–685 (1951)

    Article  Google Scholar 

  42. Ranganathan S.I., Ostoja-Starzewski M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101(5), 055504 (2008)

    Article  Google Scholar 

  43. Misra A., Poorsolhjouy P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Auffray N., Dell’Isola F., Eremeyev V., Madeo A., Rosi G.: Analytical continuum mechanics a la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2013). doi:10.1177/1081286513497616

    Article  MathSciNet  MATH  Google Scholar 

  45. Giorgio I., Grygoruk R., Dell’Isola F., Steigmann D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  46. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  47. Maugin G.A.: Some remarks on generalized continuum mechanics. Math. Mech. Solids 20(3), 280–291 (2015). doi:10.1177/1081286514544859

    Article  MathSciNet  MATH  Google Scholar 

  48. Dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-Mecanique Physique Chimie Astronomie 321(8), 303–308 (1995)

    MATH  Google Scholar 

  49. Dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Dell’Isola F., Seppecher P.: Hypertractions and hyperstresses convey the same mechanical information. Contin. Mech. Thermodyn. 22, 163–176 (2010) by Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories. Contin. Mech. Thermodyn. 23(5), 473–478 (2011). doi:10.1007/s00161-010-0176-3

    Article  MathSciNet  MATH  Google Scholar 

  51. Dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “a la D’Alembert”. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) (2012). doi:10.1007/s00033-012-0197-9

  52. Chang C.S., Chao J.S., Chang Y.: Estimates of elastic moduli for granular material with anisotropic random packing structure. Int. J. Solids Struct. 32(14), 1989–2008 (1995)

    Article  MATH  Google Scholar 

  53. Liao C.L., Chang T.P., Young D.H., Chang C.S.: Stress–strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct. 34(31–32), 4087–4100 (1997). doi:10.1016/S0020-7683(97)00015-2

    Article  MATH  Google Scholar 

  54. Chang C.S., Liao C.L.: Estimates of elastic modulus for media of randomly packed granules. Appl. Mech. Rev. 47(1), 197–206 (1994)

    Article  Google Scholar 

  55. Misra, A., Poorsolhjouy, P.: Granular micromechanicsmodel for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015). doi:10.1177/1081286515576821

  56. Misra A., Singh V.: Micromechanical model for viscoelastic materials undergoing damage. Contin. Mech. Thermodyn. 25(2–4), 343–358 (2013). doi:10.1007/s00161-012-0262-9

    Article  MathSciNet  Google Scholar 

  57. Misra A., Singh V.: Nonlinear granular micromechanics model for multi-axial rate-dependent behavior. Int. J. Solids Struct. 51(13), 2272–2282 (2014). doi:10.1016/j.ijsolstr.2014.02.034

    Article  Google Scholar 

  58. Voigt W.: Lehrbuch der kristallphysik (mit ausschluss der kristalloptik). Springer, Berlin (2014)

    MATH  Google Scholar 

  59. Malvern, L.E.: Introduction to the mechanics of a continuous medium. vol. Monograph. Prentice-Hall, New York (1969)

  60. Nye F.: Physical properties of crystals. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  61. Hardin, B.O., Richart Jr., F.: Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. 89 (Proceedings Paper 3407) (1963)

  62. Wyllie M., Gregory A., Gardner G.: An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23(3), 459–493 (1958)

    Article  Google Scholar 

  63. Wyllie M.R.J., Gregory A.R., Gardner L.W.: Elastic wave velocities in heterogeneous and porous media. Geophysics 21(1), 41–70 (1956)

    Article  Google Scholar 

  64. Leibig M.: Model for the propagation of sound in granular materials. Phys. Rev. E 49(2), 1647 (1994)

    Article  Google Scholar 

  65. Melin S.: Wave propagation in granular assemblies. Phys. Rev. E 49(3), 2353 (1994)

    Article  Google Scholar 

  66. Somfai E., Roux J.-N., Snoeijer J.H., Van Hecke M., Van Saarloos W.: Elastic wave propagation in confined granular systems. Phys. Rev. E 72(2), 021301 (2005)

    Article  Google Scholar 

  67. Datta S., Shah A.: Elastic waves in composite media and structures. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  68. Vavrycuk V.: Calculation of the slowness vector from the ray vector in anisotropic media. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2067), 883–896 (2006). doi:10.1098/rspa.2005.1605

    Article  MathSciNet  MATH  Google Scholar 

  69. Ledbetter H., Migliori A.: A general elastic-anisotropy measure. J. Appl. Phys. 100(6), 063516 (2006)

    Article  Google Scholar 

  70. Chung D., Buessem W.: The elastic anisotropy of crystals. J. Appl. Phys. 38(5), 2010–2012 (1967)

    Article  Google Scholar 

  71. Zener C.: Elasticity and anelasticity of metals. University of Chicago press, Chicago (1948)

    MATH  Google Scholar 

  72. Misra A., Yang Y.: Micromechanical model for cohesive materials based upon pseudo-granular structure. Int. J. Solids Struct. 47(21), 2970–2981 (2010). doi:10.1016/j.ijsolstr.2010.07.002

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Poorsolhjouy, P. Granular micromechanics model of anisotropic elasticity derived from Gibbs potential. Acta Mech 227, 1393–1413 (2016). https://doi.org/10.1007/s00707-016-1560-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1560-2

Keywords

Navigation