Skip to main content

Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents

Handbook of Geomathematics
  • 364 Accesses

Abstract

This chapter gives a brief overview on the application of multiscale techniques to the modeling of geomagnetic problems. Two approaches are presented: one focusing on the construction of scaling and wavelet kernels in frequency domain and the other one focusing on a spatially oriented construction resulting in locally supported wavelets. Both approaches are applied exemplarily to the modeling of the crustal field, the reconstruction of radial current systems, and the definition of a multiscale power spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Augustin M, Bauer M, Blick C, Eberle S, Freeden W, Gerhards C, Ilyasov M, Kahnt R, Klug M, Möhringer S, Neu T, Nutz H, Ostermann I, Punzi A (2014) Modeling deep geothermal reservoirs: recent advances and future perspectives. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Backus GE (1986) Poloidal and toroidal fields in geomagnetic field modeling. Rev Geophys 24: 75–109

    Article  MathSciNet  Google Scholar 

  • Backus GE, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Bayer M, Freeden W, Maier T (2001) A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data. J Atm Sol-Ter Phys 63:581–597

    Article  Google Scholar 

  • Beggan CD, Saarimäki J, Whaler K, Simons FJ (2013) Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions. Geophys J Int 193: 136–148

    Article  Google Scholar 

  • Birkeland K (1908) The Norwegian aurora polaris expedition 1902–1903, vol. 1. H. Aschehoug, Oslo

    Google Scholar 

  • Chambodut A, Panet I, Mandea M, Diament M, Holschneider M (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys J Int 163:875–899

    Article  Google Scholar 

  • Dahlke S, Dahmen W, Schmitt W, Weinreich I (1995) Multiresolution analysis and wavelets on S 2 and S 3. Numer Funct Anal Opt 16:19–41

    Article  MATH  MathSciNet  Google Scholar 

  • Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Fehlinger T, Freeden W, Gramsch S, Mayer C, Michel D, Schreiner M (2007) Local modelling of sea surface topography from (geostrophic) Ocean flow. ZAMM 87:775–791

    Article  MATH  MathSciNet  Google Scholar 

  • Fehlinger T, Freeden W, Mayer C, Schreiner M (2008) On the local multiscale determination of the Earth’s disturbing potential from discrete deflections of the vertical. Comput. Geosci. 12: 473–490

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W (1981) On approximation by harmonic splines. Manuscr Geod 6:193–244

    MATH  Google Scholar 

  • Freeden W (1998) The uncertainty principle and its role in physical geodesy. In: Freeden W (ed) Progress in geodetic science. Shaker, Aachen

    Google Scholar 

  • Freeden W, Gerhards C (2010) Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math Geosci 42:817–838

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W, Gerhards C (2012) Geomathematically oriented potential theory. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Freeden W, Maier T (2003) Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput Geosci 7:215–250

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W, Schreiner M (2006) Local multiscale modeling of geoidal undulations from deflections of the vertical. J Geod 78:641–651

    Article  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical (geo-) sciences. Springer, Heidelberg

    Google Scholar 

  • Freeden W, Schreiner M (2010a) Special functions in mathematical geosciences – an attempt of categorization. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Freeden W, Schreiner M (2010b) Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Freeden W, Windheuser U (1996) Spherical wavelet transform and its discretization. Adv Comput Math 5:51–94

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W, Wolf K (2008) Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math Semesterber 56:53–77

    Article  MathSciNet  Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geosciences). Oxford University Press, New York

    Google Scholar 

  • Freeden W, Michel D, Michel V (2005) Local multiscale approximations of geostrophic oceanic flow: theoretical background and aspects of scientific computing. Mar Geod 28:313–329

    Article  Google Scholar 

  • Freeden W, Fehlinger T, Klug M, Mathar M, Wolf K (2009) Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J Geod 83:1171–1191

    Article  Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58:351–358

    Article  Google Scholar 

  • Gauss CF (1839) Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. Göttinger Magnetischer Verein, Leipzig

    Google Scholar 

  • Gerhards C (2011a) Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. PhD thesis, University of Kaiserslautern

    Google Scholar 

  • Gerhards C (2011b) Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. Int J Geomath 1:1–52

    Article  MathSciNet  Google Scholar 

  • Gerhards C (2012) Locally supported wavelets for the separation of spherical vector fields with respect to their sources. Int J Wavel Multires Inf Process 10. doi:10.1142/S0219691312500348

    Google Scholar 

  • Gerlich G (1972) Magnetfeldbeschreibung mit Verallgemeinerten Poloidalen und Toroidalen Skalaren. Z Naturforsch 8:1167–1172

    MathSciNet  Google Scholar 

  • GRIMM-3 (2011) GFZ reference internal magnetic model 3. http://www.gfz-potsdam.de/en/research/organizational-units/departments/department-2/earths-magnetic-field/topics/field-models/grimm-x/grimm-3. Accessed date 26 Aug 2014

  • Haines GV (1985) Spherical cap harmonic analysis. J Geophys Res 90:2583–2591

    Article  Google Scholar 

  • Hesse K, Sloan IH, Womersley R (2010) Numerical integration on the sphere. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Holschneider M (1996) Continuous wavelet transforms on the sphere. J Math Phys 37:4156–4165

    Article  MATH  MathSciNet  Google Scholar 

  • Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys Earth Planet Int 135:107–124

    Article  Google Scholar 

  • Hulot G, Sabaka TJ, Olsen N (2007) The present field. In: Kono M (ed) Treatise on geophysics, vol. 5. Elsevier, Amsterdam

    Google Scholar 

  • Hulot G, Finlay CC, Constable CG, Olsen N, Mandea M (2010) The magnetic field of planet earth. Space Sci Rev 152:159–222

    Article  Google Scholar 

  • International Association of Geomagnetism and Aeronomy (IAGA), Working Group V-Mod (2010) International geomagnetic reference field: the eleventh generation. Geophys J Int 183:1216–1230

    Article  Google Scholar 

  • Kotsiaros S, Olsen N (2012) The geomagnetic field gradient tensor. Int J Geomath 3:297–314

    Article  MATH  MathSciNet  Google Scholar 

  • Langel RA (1987) The main field. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic, London

    Google Scholar 

  • Langel RA, Estes RH (1985) The near-earth magnetic field at 1980 determined from MAGSAT data. J Geophys Res 90:2495–2510

    Article  Google Scholar 

  • Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere: the satellite perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lowes FJ (1974) Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys J R Astron Soc 36:717–730

    Article  Google Scholar 

  • Maier T (2005) Wavelet-Mie-representation for solenoidal vector fields with applications to ionospheric geomagnetic data. SIAM J Appl Math 65:1888–1912

    Article  MATH  MathSciNet  Google Scholar 

  • Maier T, Mayer C (2003) Multiscale downward continuation of the crustal field from CHAMP FGM data. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Heidelberg

    Google Scholar 

  • Mauersberger P (1956) Das Mittel der Energiedichte des Geomagnetischen Hauptfeldes an der Erdoberfläche und seine sekuläre Änderung. Gerlands Beitr Geophys 65:135–142

    Google Scholar 

  • Maus S (2008) The geomagnetic power spectrum. Geophys J Int 174:135–142

    Article  Google Scholar 

  • Maus S, Hemant K, Rother M, Lühr H (2003) Mapping the lithospheric magnetic field from CHAMP scalar and vector magnetic data. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Heidelberg

    Google Scholar 

  • Maus S, Lühr H, Purucker M (2006) Simulation of the high-degree lithospheric field recovery for the Swarm constellation of satellites. Earth Planets Space 58:397–407

    Article  Google Scholar 

  • Mayer C (2003) Wavelet modeling of ionospheric currents and induced magnetic fields from satellite data. PhD thesis, University of Kaiserslautern

    Google Scholar 

  • Mayer C (2006) Wavelet decomposition of spherical vector fields with respect to sources. J Fourier Anal Appl 12:345–369

    Article  MATH  MathSciNet  Google Scholar 

  • Mayer C, Maier T (2006) Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys J Int 167:1188–1203

    Article  Google Scholar 

  • MF7 (2010) Magnetic field model MF7. http://www.geomag.us/models/MF7.html. Accessed date 28 Aug 2014

  • Müller C (1966) Spherical harmonics. Lecture notes in mathematics, vol 17. Springer, Berlin

    MATH  Google Scholar 

  • Olsen N (1997) Ionospheric F-region currents at middle and low latitudes estimated from MAGSAT data. J Geophys Res 102:4563–4576

    Article  Google Scholar 

  • Olsen N, Glassmeier K-H, Jia X (2010a) Separation of the magnetic field into external and internal parts. Space Sci Rev 152:135–157

    Article  Google Scholar 

  • Olsen N, Hulot G, Sabaka TJ (2010b) The geomagnetic field – from observations to separation of the various field contributions. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Olsen N, Lühr H, Finlay CC, Sabaka TJ, Michaelis I, Rauber J, Tøffner-Clausen L (2014) The CHAOS-4 geomagnetic field model. Geophys J Int 197:815–827

    Article  Google Scholar 

  • Papitashvili VO, Christiansen F, Neubert T (2002) A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophys Res Lett 29. doi:10.1029/2001GL014207

    Google Scholar 

  • Ritter P, Lühr H (2006) Curl-B technique applied to Swarm constellation for determining field-aligned currents. Earth Planets Space 58:463–476

    Article  Google Scholar 

  • Rummel R (2010) GOCE: gravitational gradiometry in a satellite. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Rummel R, van Gelderen M, Koop R, Schrama E, Sanso F, Brovelli M, Miggliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Publications on geodesy, vol 39. Nederlandse Commissie voor Geodesie, Delft

    Google Scholar 

  • Sabaka T, Hulot G, Olsen N (2010) Mathematical properties relevant to geomagnetic field modeling. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Schröder P, Swelden W (1995) Spherical wavelets on the sphere. In: Approximation theory VIII. World Scientific, Singapore

    Google Scholar 

  • Shure L, Parker RL, Backus GE (1982) Harmonic splines for geomagnetic modeling. Phys Earth Planet Int 28:215–229

    Article  Google Scholar 

  • Simons FJ (2010) Slepian functions and their use in signal estimation and spectral analysis. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral localization on a sphere. SIAM Rev 48:504–536

    Article  MATH  MathSciNet  Google Scholar 

  • Thébault E, Schott JJ, Mandea M (2006) Revised spherical cap harmonics analysis (R-SCHA): validation and properties. J Geophys Res 111. doi:10.1029/2005JB003836

    Google Scholar 

  • Thébault E, Purucker E, Whaler KA, Langlais B, Sabaka TJ (2010) The magnetic field of the Earth’s lithosphere. Space Sci Rev 155:95–127

    Article  Google Scholar 

  • Untied J (1967) A model of the equatorial electrojet involving meridional currents. J Geophys Res 72:5799–5810

    Article  Google Scholar 

  • Wolf K (2009) Multiscale modeling of classical boundary value problems in physical geodesy by locally support wavelets. PhD thesis, University of Kaiserslautern

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gerhards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gerhards, C. (2013). Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_18-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_18-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents
    Published:
    06 January 2015

    DOI: https://doi.org/10.1007/978-3-642-27793-1_18-4

  2. Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents
    Published:
    15 September 2014

    DOI: https://doi.org/10.1007/978-3-642-27793-1_18-3

  3. Original

    Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents
    Published:
    26 August 2014

    DOI: https://doi.org/10.1007/978-3-642-27793-1_18-2