Skip to main content
Log in

Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

This paper gives an overview on decompositions of vector fields on the sphere that are of importance in geoscientific modeling. Various versions of the Mie and Helmholtz decomposition are presented. A special emphasis is set to integral representations for the different contributions, which is of interest, e.g., in numerical applications. Furthermore, the decompositions are treated in a global framework on the entire sphere and in a local framework on regular subsurfaces. In the end, an application to the modeling of ionospheric currents is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amm O.: Elementary currents for ionospheric fields. J. Geomagn. Geoelectr. 49, 947–955 (1997)

    Google Scholar 

  • Amm, O.: Direkte Bestimmung Flächenhafter Verteilungen Ionosphärischer Elektrodynamischer Paramter aus Bodenmessungen: Theorie und Anwendung in Sphärischen Koordinaten. PhD Thesis, Faculty of Natural Sciences, TU Braunschweig (1998)

  • Amm O.: The elementary current method for calculating ionospheric current systems from multi-satellite and ground magnetometer data. J. Geophys. Res. 106, 843–855 (2001)

    Google Scholar 

  • Amm O., Viljanen A.: Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems. Earth Planets Space 51, 431–440 (1999)

    Google Scholar 

  • Backus G.E.: Poloidal and toroidal fields in geomagnetic field modeling. Rev. Geophys. 24, 75–109 (1986)

    Article  MathSciNet  Google Scholar 

  • Backus G.E., Parker R., Constable C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • Blakely R.J.: Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • DiBenedetto E.: Partial Differential Equations. Birkhäuser, Boston (1995)

    MATH  Google Scholar 

  • Driscoll J.R., Healy M.H.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Edmonds A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  • Engels U., Olsen N.: Computation of magnetic fields within source regions of ionospheric and magnetospheric currents. J. Atmos. Sol. Terr. Phys. 60, 1585–1592 (1998)

    Article  Google Scholar 

  • Fehlinger T., Freeden W., Gramsch S., Mayer C., Michel D., Schreiner M.: Local modeling of sea surface topography from (Geostrophic) ocean flow. ZAMM 87, 775–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Fehlinger T., Freeden W., Mayer C., Schreiner M.: On the local multiscale determination of the Earth’s disturbing potential from discrete deflections of the vertical. Comp. Geosci. 12, 473–490 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W., Gerhards C.: Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math. Geosci. 42, 817–838 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W., Grevens T., Schreiner M.: Constructive Approximation on the Sphere—With Application to Geomathematics. Oxford Science Publication, Clarendon Press, Oxford (1998)

    Google Scholar 

  • Freeden W., Gutting M.: On the completeness and closure of vector and tensor spherical harmonics. Int. Transf. Spec. Func. 19, 713–734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W., Michel D., Michel V.: Local multiscale approximations of geostrophic ocean flow: theoretical background and scientific computing. Mar. Geod. 28, 313–329 (2005)

    Article  Google Scholar 

  • Freeden W., Schreiner M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)

    Article  MATH  Google Scholar 

  • Freeden W., Schreiner M.: Spherical Functions of Mathematical Geosciences—A Scalar, Vectorial, and Tensorial Setup. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  • Fukushima N.: Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere. Rep. Ion. Space Res. Jpn. 30, 35–40 (1976)

    Google Scholar 

  • Gerhards, C.: Locally supported wavelets for multiscale methods with application in geomagnetic modeling. PhD Thesis, Geomathematics Group, University of Kaiserslautern (2010)

  • Gerlich G.: Magnetfeldbeschreibung mit Verallgemeinerten Poloidalen und Toroidalen Skalaren. Z. Naturforsch. 8, 1167–1172 (1972)

    MathSciNet  Google Scholar 

  • Gilbart D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)

    Google Scholar 

  • Green, D.L.: The Mie and Helmholtz representation of vector fields in the context of magnetosphere–ionosphere coupling. PhD Thesis, School of Mathematical and Physical Sciences, University of Newcastle, Australia (2006)

  • Gui Y.F., Dou W.B.: Rigorous and completed statement on Helmholtz theorem. Progr. Electromagn. Res. 69, 287–304 (2007)

    Article  Google Scholar 

  • Gutkin E., Newton K.P.: The method of Images and Green’s function for spherical domains. J. Phys. A Math. Gen. 37, 11989–12003 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen E.R.: A Table of Series and Products. Prentice Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  • Heiskanen W.A., Moritz H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  • Keller J.B.: The scope of the Image method. Commun. Pure Appl. Math. 6, 505–512 (1953)

    Article  MATH  Google Scholar 

  • Kidambi R., Newton K.P.: Point vortex motion on a sphere with solid boundaries. Phys. Fluids 12, 581–588 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Maier T.: Wavelet Mie representations for solenoidal vector fields with application to ionospheric geomagnetic data. SIAM J. Appl. Math. 65, 1888–1912 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Mayer C.: Wavelet modelling of the spherical inverse source problem with application to geomagnetism. Inverse Problems 20, 1713–1728 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Mayer C.: Wavelet decomposition of spherical vector fields with respect to sources. J. Fourier Anal. Appl. 12, 345–369 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mayer C., Maier T.: Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int. 167, 1188–1203 (2006)

    Article  Google Scholar 

  • Newton P.K.: The N-Vortex Problem: Analytical Techniques. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Olsen N.: Ionospheric F-region currents at middle and low latitudes estimated from MAGSAT data. J. Geophys. Res. 102, 4563–4576 (1997)

    Article  Google Scholar 

  • Pedlosky J.: Geophysical Fluid Dynamics. Springer, New York (1979)

    MATH  Google Scholar 

  • Sabaka, T.J., Hulot, G., Olsen, N.: Mathematical properties relevant to geomagnetic modelling. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, pp. 891–924. Springer, Heidelberg (2010)

  • Sommerfeld A.: Partial Differential Equations in Physics. Academic Press, New York (1949)

    MATH  Google Scholar 

  • Sprössig W.: On Helmholtz decompositions and their generalizations—an overview. Math. Methods Appl. Sci. 33, 374–383 (2010)

    MathSciNet  MATH  Google Scholar 

  • Stewart, R.H.: Introduction to physical oceanography. Electronic Publication. (http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html), Texas A&M University, Department of Oceanography (2005)

  • Svensson S.L.: Pseudodifferential operators—a new approach to the boundary value problems of physical geodesy. Manusc. Geod. 8, 1–40 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gerhards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhards, C. Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. Int J Geomath 1, 205–256 (2011). https://doi.org/10.1007/s13137-010-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-010-0011-9

Keywords

Mathematics Subject Classification (2000)

Navigation