Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents

Living reference work entry

Latest version View entry history

Abstract

This chapter gives a brief overview on the application of multiscale techniques to the modeling of geomagnetic problems. Two approaches are presented: one focusing on the construction of scaling and wavelet kernels in frequency domain and the other one focusing on a spatially oriented construction resulting in locally supported wavelets. Both approaches are applied exemplarily to the modeling of the crustal field, the reconstruction of radial current systems, and the definition of a multiscale power spectrum.

Keywords

Spherical Harmonic Beltrami Operator Spherical Harmonic Degree Wavelet Kernel Gauss Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Augustin M, Bauer M, Blick C, Eberle S, Freeden W, Gerhards C, Ilyasov M, Kahnt R, Klug M, Möhringer S, Neu T, Nutz H, Ostermann I, Punzi A (2014) Modeling deep geothermal reservoirs: recent advances and future perspectives. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics, 2nd edn. Springer, HeidelbergGoogle Scholar
  2. Backus GE (1986) Poloidal and toroidal fields in geomagnetic field modeling. Rev Geophys 24: 75–109MathSciNetCrossRefGoogle Scholar
  3. Backus GE, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, CambridgeGoogle Scholar
  4. Bayer M, Freeden W, Maier T (2001) A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data. J Atm Sol-Ter Phys 63:581–597CrossRefGoogle Scholar
  5. Beggan CD, Saarimäki J, Whaler K, Simons FJ (2013) Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions. Geophys J Int 193: 136–148CrossRefGoogle Scholar
  6. Birkeland K (1908) The Norwegian aurora polaris expedition 1902–1903, vol. 1. H. Aschehoug, OsloGoogle Scholar
  7. Chambodut A, Panet I, Mandea M, Diament M, Holschneider M (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys J Int 163:875–899CrossRefGoogle Scholar
  8. Dahlke S, Dahmen W, Schmitt W, Weinreich I (1995) Multiresolution analysis and wavelets on S 2 and S 3. Numer Funct Anal Opt 16:19–41MathSciNetCrossRefGoogle Scholar
  9. Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press, PrincetonMATHGoogle Scholar
  10. Fehlinger T, Freeden W, Gramsch S, Mayer C, Michel D, Schreiner M (2007) Local modelling of sea surface topography from (geostrophic) Ocean flow. ZAMM 87:775–791MathSciNetCrossRefMATHGoogle Scholar
  11. Fehlinger T, Freeden W, Mayer C, Schreiner M (2008) On the local multiscale determination of the Earth’s disturbing potential from discrete deflections of the vertical. Comput Geosci 12:473–490MathSciNetCrossRefMATHGoogle Scholar
  12. Freeden W (1981) On approximation by harmonic splines. Manuscr Geod 6:193–244MATHGoogle Scholar
  13. Freeden W (1998) The uncertainty principle and its role in physical geodesy. In: Freeden W (ed) Progress in geodetic science. Shaker, AachenGoogle Scholar
  14. Freeden W, Gerhards C (2010) Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math Geosci 42:817–838MathSciNetCrossRefMATHGoogle Scholar
  15. Freeden W, Gerhards C (2012) Geomathematically oriented potential theory. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  16. Freeden W, Maier T (2003) Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput Geosci 7:215–250MathSciNetCrossRefMATHGoogle Scholar
  17. Freeden W, Schreiner M (2006) Local multiscale modeling of geoidal undulations from deflections of the vertical. J Geod 78:641–651CrossRefGoogle Scholar
  18. Freeden W, Schreiner M (2009) Spherical functions of mathematical (geo-) sciences. Springer, HeidelbergGoogle Scholar
  19. Freeden W, Schreiner M (2014a) Special functions in mathematical geosciences – an attempt of categorization. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics 2nd edn. Springer, HeidelbergCrossRefGoogle Scholar
  20. Freeden W, Schreiner M (2014b) Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics 2nd edn. Springer, HeidelbergCrossRefGoogle Scholar
  21. Freeden W, Windheuser U (1996) Spherical wavelet transform and its discretization. Adv Comput Math 5:51–94MathSciNetCrossRefMATHGoogle Scholar
  22. Freeden W, Wolf K (2008) Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math Semesterber 56:53–77MathSciNetCrossRefGoogle Scholar
  23. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geosciences). Oxford University Press, New YorkGoogle Scholar
  24. Freeden W, Michel D, Michel V (2005) Local multiscale approximations of geostrophic oceanic flow: theoretical background and aspects of scientific computing. Mar Geod 28:313–329CrossRefGoogle Scholar
  25. Freeden W, Fehlinger T, Klug M, Mathar M, Wolf K (2009) Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J Geod 83:1171–1191CrossRefGoogle Scholar
  26. Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58:351–358CrossRefMATHGoogle Scholar
  27. Gauss CF (1839) Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. Göttinger Magnetischer Verein, LeipzigGoogle Scholar
  28. Gerhards C (2011a) Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. PhD thesis, University of KaiserslauternGoogle Scholar
  29. Gerhards C (2011b) Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. Int J Geomath 1:1–52MathSciNetCrossRefGoogle Scholar
  30. Gerhards C (2012) Locally supported wavelets for the separation of spherical vector fields with respect to their sources. Int J Wavel Multires Inf Process 10. doi:10.1142/S0219691312500348Google Scholar
  31. Gerlich G (1972) Magnetfeldbeschreibung mit Verallgemeinerten Poloidalen und Toroidalen Skalaren. Z Naturforsch 8:1167–1172MathSciNetGoogle Scholar
  32. Haines GV (1985) Spherical cap harmonic analysis. J Geophys Res 90:2583–2591CrossRefGoogle Scholar
  33. Hesse K, Sloan IH, Womersley R (2014) Numerical integration on the sphere. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics 2nd edn. Springer, HeidelbergGoogle Scholar
  34. Holschneider M (1996) Continuous wavelet transforms on the sphere. J Math Phys 37:4156–4165MathSciNetCrossRefMATHGoogle Scholar
  35. Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys Earth Planet Int 135:107–124CrossRefGoogle Scholar
  36. Hulot G, Sabaka TJ, Olsen N (2007) The present field. In: Kono M (ed) Treatise on geophysics, vol. 5. Elsevier, AmsterdamGoogle Scholar
  37. Hulot G, Finlay CC, Constable CG, Olsen N, Mandea M (2010) The magnetic field of planet earth. Space Sci Rev 152:159–222CrossRefGoogle Scholar
  38. IAGA (International Association of Geomagnetism and Aeronomy), Working Group V-MOD (2010) International geomagnetic reference field: the eleventh generation. Geophys J Int 183:1216–1230CrossRefGoogle Scholar
  39. Kotsiaros S, Olsen N (2012) The geomagnetic field gradient tensor. Int J Geomath 3:297–314MathSciNetCrossRefMATHGoogle Scholar
  40. Langel RA (1987) The main field. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic, LondonGoogle Scholar
  41. Langel RA, Estes RH (1985) The near-earth magnetic field at 1980 determined from MAGSAT data. J Geophys Res 90:2495–2510CrossRefGoogle Scholar
  42. Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere: the satellite perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Lowes FJ (1974) Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys J R Astron Soc 36:717–730CrossRefGoogle Scholar
  44. Maier T (2005) Wavelet-Mie-representation for solenoidal vector fields with applications to ionospheric geomagnetic data. SIAM J Appl Math 65:1888–1912MathSciNetCrossRefGoogle Scholar
  45. Maier T, Mayer C (2003) Multiscale downward continuation of the crustal field from CHAMP FGM data. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, HeidelbergGoogle Scholar
  46. Mauersberger P (1956) Das Mittel der Energiedichte des Geomagnetischen Hauptfeldes an der Erdoberfläche und seine sekuläre Änderung. Gerlands Beitr Geophys 65:135–142Google Scholar
  47. Maus S (2008) The geomagnetic power spectrum. Geophys J Int 174:135–142CrossRefGoogle Scholar
  48. Maus S, Hemant K, Rother M, Lühr H (2003) Mapping the lithospheric magnetic field from CHAMP scalar and vector magnetic data. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, HeidelbergGoogle Scholar
  49. Maus S, Lühr H, Purucker M (2006) Simulation of the high-degree lithospheric field recovery for the Swarm constellation of satellites. Earth Planets Space 58:397–407CrossRefGoogle Scholar
  50. Mayer C (2003) Wavelet modeling of ionospheric currents and induced magnetic fields from satellite data. PhD thesis, University of KaiserslauternGoogle Scholar
  51. Mayer C (2006) Wavelet decomposition of spherical vector fields with respect to sources. J Fourier Anal Appl 12:345–369MathSciNetCrossRefMATHGoogle Scholar
  52. Mayer C, Maier T (2006) Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys J Int 167:1188–1203CrossRefGoogle Scholar
  53. MF7 (2010) Magnetic field model MF7. http://www.geomag.us/models/MF7.html. Accessed date 28 Aug 2014
  54. Müller C (1966) Spherical harmonics. Lecture notes in mathematics, vol 17. Springer, BerlinMATHGoogle Scholar
  55. Olsen N (1997) Ionospheric F-region currents at middle and low latitudes estimated from MAGSAT data. J Geophys Res 102:4563–4576CrossRefGoogle Scholar
  56. Olsen N, Glassmeier K-H, Jia X (2010) Separation of the magnetic field into external and internal parts. Space Sci Rev 152:135–157CrossRefGoogle Scholar
  57. Olsen N, Hulot G, Sabaka TJ (2014) The geomagnetic field – from observations to separation of the various field contributions. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics 2nd edn. Springer, HeidelbergGoogle Scholar
  58. Olsen N, Lühr H, Finlay CC, Sabaka TJ, Michaelis I, Rauber J, Tøffner-Clausen L (2014) The CHAOS-4 geomagnetic field model. Geophys J Int 197:815–827CrossRefMATHGoogle Scholar
  59. Papitashvili VO, Christiansen F, Neubert T (2002) A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophys Res Lett 29. doi:10.1029/2001GL014207Google Scholar
  60. Ritter P, Lühr H (2006) Curl-B technique applied to Swarm constellation for determining field-aligned currents. Earth Planets Space 58:463–476CrossRefGoogle Scholar
  61. Rummel R (2010) GOCE: gravitational gradiometry in a satellite. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics. Springer, HeidelbergGoogle Scholar
  62. Rummel R, van Gelderen M, Koop R, Schrama E, Sanso F, Brovelli M, Miggliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Publications on geodesy, vol 39. Nederlandse Commissie voor Geodesie, DelftGoogle Scholar
  63. Sabaka T, Hulot G, Olsen N (2014) Mathematical properties relevant to geomagnetic field modeling. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics 2nd edn. Springer, HeidelbergGoogle Scholar
  64. Schröder P, Swelden W (1995) Spherical wavelets on the sphere. In: Approximation theory VIII. World Scientific, SingaporeGoogle Scholar
  65. Shure L, Parker RL, Backus GE (1982) Harmonic splines for geomagnetic modeling. Phys Earth Planet Int 28:215–229CrossRefGoogle Scholar
  66. Simons FJ, Plattner A (2014) Scalar and vector slepian functions, spherical signal estimation and spectral analysis. In: Freeden W, Nashed Z, Sonar T (eds) Handbook of geomathematics 2nd edn. Springer, HeidelbergGoogle Scholar
  67. Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral localization on a sphere. SIAM Rev 48:504–536MathSciNetCrossRefMATHGoogle Scholar
  68. Thébault E, Schott JJ, Mandea M (2006) Revised spherical cap harmonics analysis (R-SCHA): validation and properties. J Geophys Res 111. doi:10.1029/2005JB003836Google Scholar
  69. Thébault E, Purucker E, Whaler KA, Langlais B, Sabaka TJ (2010) The magnetic field of the Earth’s lithosphere. Space Sci Rev 155:95–127CrossRefGoogle Scholar
  70. Untied J (1967) A model of the equatorial electrojet involving meridional currents. J Geophys Res 72:5799–5810CrossRefGoogle Scholar
  71. Wolf K (2009) Multiscale modeling of classical boundary value problems in physical geodesy by locally support wavelets. PhD thesis, University of KaiserslauternGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations