Skip to main content

Angiogenesis in Liver Cancer

  • Living reference work entry
  • First Online:
Tumors and Tumor-Like Lesions of the Hepatobiliary Tract
  • 195 Accesses

Abstract

Angiogenesis, the formation of new tumor vessels, is a critical mechanism for the development and progression of hepatobiliary cancers, which are often highly vascular tumors. In contrast to normal tissues, tumor vessels frequently form highly atypical branching patterns, with irregular diameters and abrupt changes from large to small diameters. This abnormal vasculature of malignant neoplasms serves as an important diagnostic element in modern tumor imaging. The principal cells mediating angiogenesis in neoplasms are tumor endothelial cells, and auxiliary cells involved in tumor angiogenesis include perivascular cells, stromal cells, tumor-associated monocytes and macrophages, and other leukocytes. Initiation and progression of angiogenesis, which requires a vigorous proliferative response of tumor endothelial cells and their precursors, involves the action of numerous angiogenic factors. Similar to normal tissues, the main factors comprise vascular endothelial growth factors, angiopoietins, basic fibroblast growth factor, platelet-derived endothelial growth factor, endoglin, and ephrin. Hepatobiliary cancers also express several anti-angiogenic factors. Tumor angiogenesis is markedly modulated by factors secreted by stromal leukocytes and by epigenetic mechanisms, mainly numerous microRNAs expressed by tumor cells and stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi Y, Takeuchi T, Sonobe H, Ohtsuki Y (2006) An adiponectin receptor, T-cadherin, was selectively expressed in intratumoral capillary endothelial cells in hepatocellular carcinoma: possible cross talk between T-cadherin and FGF-2 pathways. Virchows Arch 448:311–318

    Article  CAS  PubMed  Google Scholar 

  • Adnane L, Trail PA, Taylor I, Wilhelm SM (2006) Sorafenib (BAY 43–9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407:597–612

    Article  CAS  PubMed  Google Scholar 

  • Aird WC (2009) Molecular heterogeneity of tumor endothelium. Cell Tissue Res 335:271–281

    Article  CAS  PubMed  Google Scholar 

  • Aishima S, Nishihara Y, Iguchi T, Taguchi K, Taketomi A, Maehara Y, Tsuneyoshi M (2008) Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Mod Pathol 21:256–264

    Article  CAS  PubMed  Google Scholar 

  • Albrecht I, Bieri R, Leu A, Granacher P, Hagmann J, Kilimann MW, Christofori G (2013) Paralemmin-1 is expressed in lymphatic endothelial cells and modulates cell migration, cell maturation and tumor lymphangiogenesis. Angiogenesis 16:795–807

    Article  CAS  PubMed  Google Scholar 

  • Almog N (2013) Genes and regulatory pathways involved in persistence of dormant micro-tumors. Adv Exp Med Biol 734:3–17

    Article  CAS  PubMed  Google Scholar 

  • Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S, Hlatky L, Vajkoczy P et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69:836–844

    Article  CAS  PubMed  Google Scholar 

  • Al-Rawi MAA, Mansel RE, Jiang WG (2005) Lymphangiogenesis and its role in cancer. Histol Histopathol 20:283–298

    CAS  PubMed  Google Scholar 

  • Amaoka N, Saio M, Nonaka K, Imai H, Tomita H, Sakashita F, Takahashi T, Sugiyama Y et al (2006) Expression of vascular endothelial growth factor receptors is closely related to the histologic grade of hepatocellular carcinoma. Oncol Rep 16:3–10

    CAS  PubMed  Google Scholar 

  • Amit-Cohen BC, Rahat MM, Rahat MA (2013) Tumor cell-macrophage interactions angiogenesis through secretion of EMMPRIN. Front Physiol 4:178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arstikaitis P, Gauthier-Campbell C, Carolina Gutierrez Herrera R, Huang K, Levinson JN et al (2008) Paralemmin-1, a modulator of filopodia induction is required for spine maturation. Mol Biol Cell 19:2026–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augsten M, Sjöberg E, Frings O, Vorrink SU, Frijhoff J, Olsson E, Borg A, Östeman A (2014) Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res 74:2999–3010

    Article  CAS  PubMed  Google Scholar 

  • Bach F, Uddin FJ, Burke D (2007) Angiopoietins in malignancy. Eur J Surg Oncol 33:7–15

    Article  CAS  PubMed  Google Scholar 

  • Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19:329–337

    Article  CAS  PubMed  Google Scholar 

  • Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163:1801–1815

    Article  PubMed  PubMed Central  Google Scholar 

  • Barajas M, Franchi F, Clavel C, Aranguren XL, Kramer MG, Abizanda G, Merino J et al (2007) Multipotent adult progenitor cells (MAPC) contribute to hepatocarcinoma neovasculature. Biochem Biophys Res Commun 364:92–99

    Article  CAS  PubMed  Google Scholar 

  • Bellone M, Calcinotto A (2013) Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front Oncol 3:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Belmont L, Rabbe N, Antoine M, Cathelin D, Guignabert C, Kurie J, Cadranel J, Wislez M (2014) Expression of TLR9 in tumor-infiltrating mononuclear cells enhances angiogenesis and is associated with a worse survival in lung cancer. Int J Cancer 134:765–777

    Article  CAS  PubMed  Google Scholar 

  • Benzekry S, Gandolfi A, Hahnfeldt P (2014) Global dormancy of metastases due to systemic inhibition of angiogenesis. PLoS ONE 9, e84249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berta J, Hoda MA, Laszlo V, Rozsas A, Garay T, Torok S, Grusch M, Berger W, Paku S et al (2014) Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget 5:4426–4437

    Article  PubMed  PubMed Central  Google Scholar 

  • Billottet C, Quemener C, Bikfalvi A (2013) CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta 1836:287–295

    CAS  PubMed  Google Scholar 

  • Bonauer et al. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20415654

  • Bosisio D, Salvi V, Gagiostro V, Sozzani S (2014) Angiogenic and antiangiogenic chemokines. Chem Immunol Allergy 99:89–104

    Article  CAS  PubMed  Google Scholar 

  • Brandau S, Moses K, Lang S (2013) The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins? Semin Cancer Biol 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Buonaguro L (2014) TIE-2-expressing monocytes: a possible cellular diagnostic and prognostic biomarker for hepatocellular carcinoma. Hepatobiliary Surg Nutr 3:419–420

    PubMed  PubMed Central  Google Scholar 

  • Bupathi M, Kaseb A, Janku F (2014) Angiopoietin-2 as a therapeutic target in hepatocellular carcinoma treatment: current perspectives. Oncol Targets Ther 7:1927–1932

    CAS  Google Scholar 

  • Burke M, Choksawangkarn W, Edwards N, Ostrand-Rosenberg S, Fenselau C (2014) Exosomes from myloid-derived suppressor cells carry biologically active proteins. J Proteome Res 13:836–843

    Article  CAS  PubMed  Google Scholar 

  • Calcinotto A, Grioni M, Jachetti E, Curnis F, Mondino A, Parmiani G, Corti A, Bellone M (2012) Targeting TNF-α to neoangiogenic vessels enhances lymphocyte infiltration in tumors and increases the therapeutic potential of immunotherapy. J Immunol 188:2687–2694

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q (2013) Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta 1836:273–286

    CAS  PubMed  Google Scholar 

  • Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F et al (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204

    Article  PubMed  CAS  Google Scholar 

  • Card CM, Yu SS, Swartz MA (2014) Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest 124:943–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmi Y, Voronov E, Dotan S, Lahat N, Rahat MA, Fogel M, Huszar M, White MR, Dinarello CA, Apte RN (2009) The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis. J Immunol 183:4705–4714

    Article  CAS  PubMed  Google Scholar 

  • Carmi Y, Dotan S, Rider P, Kaplanov I, White MR, Baron R, Abutbul S, Huszar M, Dinarello CA, Apte RN, Voronov E (2013) The role of IL-1β in the early tumor cell-induced angiogenic response. J Immunol 190:3500–3509

    Article  CAS  PubMed  Google Scholar 

  • Caronni N, Savino B, Bonecchi R (2015) Myeloid cells in cancer-related inflammation. Immunobiology 220:249–253

    Article  CAS  PubMed  Google Scholar 

  • Carrion B, Kong YP, Kaigler D, Outnam AJ (2013) Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor. Exp Cell Res 319:2964–2976

    Article  CAS  PubMed  Google Scholar 

  • Cervello M, Montalto G (2006) Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol 12:5113–5121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L, Zhou JM, Wang LR, Zhang KZ, Zhang QB et al (2013) MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS ONE 8, e77957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers SE, O’Neill CL, O’Doherty TM, Medina RJ, Stitt AW (2013) The role of immune-related myeloid cells in angiogenesis. Immunobiology 218:1370–1375

    Article  CAS  PubMed  Google Scholar 

  • Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 97:14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao Y, Li CP, Chau GY, Chen CP, King KL, Lui WY, Yen SH, Chang FY et al (2003) Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol 10:355–362

    Article  PubMed  Google Scholar 

  • Che N, Zhao XL, Sun T, Zhao XM, Gu Q, Dong XY, Zhao N, Liu YR, Yao Z, Sun BC (2011) The role of Twist1 in hepatocellular carcinoma angiogenesis: a clinical study. Hum Pathol 42:840–847

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Herndon ME, Lawler J (2000) The cell biology of thrombospondin-1. Matrix Biol 19:597–614

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yang Z, Wang G, Wang C (2001) Expression of angiopoietin-2 gene and its receptor Tie2 in hepatocellular carcinoma. J Tongji Med Univ 21:228–230

    Article  PubMed  Google Scholar 

  • Chen JC, Chang YW, Hong CC, Yu YH, Su JL (2012) The role of the VEGF-C/VEGFRs axis in tumor progression and therapy. Int J Mol Sci 14:88–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen et al. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23426184

  • Chen J, Liu WB, Jia WD, Xu GL, Ma JL, Ren Y, Chen H, Sun SN, Huang M, Li JS (2014a) Embryonic morphogen nodal is associated with progression and poor prognosis of hepatocellular carcinoma. PLoS ONE 9, e85840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Fang J, Wang S, Liu H, Du X, Chen J, Li X, Yang Y, Zhang B, Zhang W (2014b) A new mosaic pattern in glioma vascularization: exogenous endothelial progenitor cells integrating into the vessels containing tumor-derived endothelial cells. Oncotarget 5:1955–1968

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherry-Bohannan J, Baker K, Francis H (2012) VEGF and cholangiocarcinoma: feeding the tumor. Transl Gastrointest Cancer 1:95–102

    Google Scholar 

  • Chu LY, Ramakrishnan DP, Silverstein RL (2013) Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood 122:1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung C, Iwakiri Y (2013) The lymphatic vascular system in liver diseases: its role in ascites formation. Clin Mol Hepatol 19:99–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C et al (2010) Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 70:5270–5280

    Article  CAS  PubMed  Google Scholar 

  • Coffelt SB, Chen YY, Muthana M, Welford AF, Tal AO, Scholz A, Plate KH, Reiss Y et al (2011) Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol 186:4183–4190

    Article  CAS  PubMed  Google Scholar 

  • Condamine T, Ramachandran I, Youn JI, Gabrilovich DI (2015) Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med 66:97–110

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Hano H, Sakata A, Harada T, Liu T, Takai S, Ushigome S (1996) Enhanced CD34 expression of sinusoid-like vascular endothelial cells in hepatocellular carcinoma. Pathol Int 46:751–756

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Lin C, Wu Z, Liu A, Zhang X, Zhu J, Wu G, Wu J, Li M, Li J, Song L (2014) AGK enhances angiogenesis and inhibits apoptosis via activation of the NF-kB signaling pathway in hepatocellular carcinoma. Oncotarget 5:12057–12069

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai T, Zhang D, Cai M, Wang C, Wu Z, Ying Z, Wu J, Li M, Xie D, Li J, Song L (2015) Golgi phosphoprotein 3 (GOLPH3) promotes hepatocellular carcinoma cell aggressiveness by activating the NF-kB pathway. J Pathol 235:490–501

    Article  CAS  PubMed  Google Scholar 

  • Dang K, Myers KA (2015) The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 16:6353–6372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dapas B, Grassi M, Grassi G (2014) Can TIE-2 expressing monocytes represent a novel marker for hepatocellular carcinoma? Hepatobiliary Surg Nutr 3:175–178

    PubMed  PubMed Central  Google Scholar 

  • De Palma M, Naldini L (2009) Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy ? Biochim Biophys Acta 1796:5–10

    PubMed  Google Scholar 

  • De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE (2007) Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 28:519–524

    Article  PubMed  CAS  Google Scholar 

  • De Palma M, Coukos G, Semela D (2013) TIE2-expressing monocytes: a novel cellular biomarker for hepatocellular carcinoma ? Hepatology 57:1294–1296

    Article  PubMed  CAS  Google Scholar 

  • Deli G, Jin CH, Mu R, Yang S, Liang Y, Chen D, Makuuchi M (2005) Immunohistochemical assessment of angiogenesis in hepatocellular carcinoma and surrounding cirrhotic liver tissues. World J Gastroenterol 11:960–963

    Article  PubMed  PubMed Central  Google Scholar 

  • Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L, Quigley JP (2014) Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 16:771–788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhanabal et al. 2002. http://www.ncbi.nlm.nih.gov/pubmed/15950186

  • Dhanabal et al. 2005. http://www.ncbi.nlm.nih.gov/pubmed/12097297

  • Dhar DK, Naora H, Yamanoi A, Ono T, Kohno H, Otani H, Nagasue N (2002) Requisite role for VEGF receptors in angiogenesis of hepatocellular carcinoma: a comparison with angiopoietin/Tie pathway. Anticancer Res 22:379–386

    CAS  PubMed  Google Scholar 

  • Di Tomaso E, Capen D, Haskell A, Hart J, Logie JJ, Jain RK, McDonald DM, Jones R et al (2005) Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res 65:5740–5749

    Article  PubMed  Google Scholar 

  • Dias S, Choy M, Rafii S (2001) The role of CXC chemokines in the regulation of tumor angiogenesis. Cancer Invest 19:732–738

    Article  CAS  PubMed  Google Scholar 

  • Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27–33

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Cai J, Mao M, Fang Y, Huang Z, Jia J, Li T, Xu L, Wang J, Zhou J, Yang Q et al (2014) Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells. APMIS 122:1059–1069

    Article  CAS  PubMed  Google Scholar 

  • Dirkx AE, ude Egbrink MG, Kuijpers MJ, vander Niet ST, Heijnen VV, Bouma-ter Steege JC, Wagstaff J, Griffioen AW (2003) Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63:2322–2329

    CAS  PubMed  Google Scholar 

  • Duff et al. 2003. http://www.ncbi.nlm.nih.gov/pubmed/12773481

  • Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61:1155–1167

    Article  CAS  PubMed  Google Scholar 

  • Dumitru CA, Lang S, Brandau S (2013) Modulation of neutrophil granulocytes in the tumor microenvironment: mechanisms and consequences for tumor progression. Semin Cancer Biol 23:141–148

    Article  CAS  PubMed  Google Scholar 

  • Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, Baeck C, Hittatiya K, Eulberg D et al (2014) CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 63:1960–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekström EJ, Bergenfelz C, von Bülow V, Serifler F, Carlemalm E, Jönsson G, Andersson T (2014) WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol Cancer 13:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280:145–153

    Article  CAS  PubMed  Google Scholar 

  • Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, Zhang JP, Guan XY, Zhuang SM (2011a) MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 54:1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, Yee AJ, Ang LC, He C, Shan SW, Yang BB (2011b) MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene 30:806–821

    Article  CAS  PubMed  Google Scholar 

  • Farina AR, Mackay AR (2014) Gelatinase B/MMP-9 in tumour pathogenesis and progression. Cancers (Basel) 6:240–296

    Article  CAS  Google Scholar 

  • Fava G, Demorrow S, Gaudio E, Franchitto A, Onori P, Carpino G, Glaser S, Francis H et al (2009) Endothelin inhibits cholangiocarcinoma growth by a decrease in the vascular endothelial growth factor expression. Liver Int 29:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn NA, Searles CD (2012) Intracellular and extracellular miRNAs in regulation of angiogenesis signaling. Curr Angiogenesis 4:299–307

    Article  Google Scholar 

  • Forget et al. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24892425

  • Franchitto A, Onori P, Renzi A, Carpino G, Mancinelli R, Alvaro D, Gaudio E (2013) Expression of vascular endothelial growth factors and their receptors by hepatic progenitor cells in human liver diseases. Hepatobiliary Surg Nutr 2:68–77

    PubMed  PubMed Central  Google Scholar 

  • Fujita N, Nishie A, Aishima S, Kubo Y, Asayama Y, Ishigami K, Kakihara D, Ushijima Y et al (2014) Role of tumor-associated macrophages in the angiogenesis of well-differentiated hepatocellular carcinoma: pathological-radiological correlation. Oncol Rep 31:2499–2505

    PubMed  Google Scholar 

  • Garcia S, Krausz S, Ambarus CA, Fernandez BM, Hartkamp LM, van Es IE, Hamann J et al (2014) Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype. PLoS ONE 9, e82088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauglhofer C, Sagmeister S, Schrottmaier W, Fischer C, Rodgarkia-Dara C, Mohr T, Stättner S et al (2011) Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology 53:854–864

    Article  CAS  PubMed  Google Scholar 

  • Geis T, Döring C, Popp R, Grossmann N, Fleming I, Hansmann M, Dehne N, Brüne B (2014) HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma. Exp Cell Res. pii:S0014-4827(14)00521-7

    Google Scholar 

  • Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, Wang J (2014) MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 33:5332–5340

    Article  CAS  PubMed  Google Scholar 

  • Germano D, Daniele B (2014) TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatobiliary Surg Nutr 3:166–167

    PubMed  PubMed Central  Google Scholar 

  • Ghanekar A, Ahmed S, Chen K, Adeyi O (2013) Endothelial cells do not arise from tumor-initiating cells in human hepatocellular carcinoma. BMC Cancer 13:485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giatromanolaki A, Sivridis E, Simopoulos C, Polychronidis A, Gatter KC, Harris AL et al (2006) Hypoxia inducible factors 1alpha and 2alpha are associated with VEGF expression and angiogenesis in gallbladder carcinomas. J Surg Oncol 94:242–247

    Article  CAS  PubMed  Google Scholar 

  • Glaser SS, Gaudio E, Alpini G (2010) Vascular factors, angiogenesis and biliary tract disease. Curr Opin Gastroenterol 26:246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrin Rivas MJ, Arii S, Furutani M, Harada T, Mizumoto M, Nishiyama H, Fujita J et al (1998) Expression of human macrophage metalloelastase gene in hepatocellular carcinoma: correlation with angiostatin generation and its clinical significance. Hepatology 28:986–993

    Article  CAS  PubMed  Google Scholar 

  • Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenhill C (2014) Hepatocellular carcinoma: new insight into angiogenesis in hepatocellular carcinoma – involvement of microRNA-26a. Nat Rev Gastroenterol Hepatol 11:3

    Article  PubMed  Google Scholar 

  • Greening DW, Gopal SK, Mathias RA, Liu L, Sheng J, Zhu HJ, Simpson RJ (2015) Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin Cell Dev Biol. pii: S1084-9521(15)00035-X

    Google Scholar 

  • Guo L, Kuroda N, Toi M, Miyazaki E, Hayashi Y, Enzan H, Jin Y (2001) Increased expression of platelet-derived endothelial cell growth factor in human hepatocellular carcinomas correlated with high Edmondson grades and portal vein tumor thrombosis. Oncol Rep 8:871–876

    CAS  PubMed  Google Scholar 

  • Guo C, Buranych A, Sarkar D, Fisher PB, Wang XY (2013) The role of tumor-associated macrophages in tumor vascularization. Vasc Cell 5:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hainaud P, Contrerès JO, Villemain A, Liu LX, Plouet J, Tobelem G, Dupuy E (2006) The role of the vascular endothelial growth factor-delta-like 4 ligand/Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res 66:8501–8510

    Article  CAS  PubMed  Google Scholar 

  • Hammam O, Mahmoud O, Zahran M, Sayed A, Salama R, Hosny K, Farghly A (2013) A possible role for TNF-α in coordinating inflammation and angiogenesis in chronic liver disease and hepatocellular carcinoma. Gastrointest Cancer Res 6:107–114

    PubMed  PubMed Central  Google Scholar 

  • Harino Y, Imura S, Kanemura H, Morine Y, Fujii M, Ikegami T, Uehara H, Shimada M (2008) Role of tumor angiogenesis in gallbladder carcinoma: with special reference to thymidine phosphorylase. Int J Clin Oncol 13:452–457

    Article  CAS  PubMed  Google Scholar 

  • Hasita et al. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20545696

  • Hassan M, Selimovic D, El-Khattouti A, Soell M, Ghozlan H, Haikel Y, Abdelkader O, Megahed M (2014) Hepatitis C virus-mediated angiogenesis: molecular mechanisms and therapeutic strategies. World J Gastroenterol 20:15467–15475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellebrekers DM, Catsermans K, Viré E, Dings RP, Hoebers NT, Mayo KH, Oude Egbrink MG, Molema G, Fuks F et al (2006) Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 66:10770–10771

    Article  CAS  PubMed  Google Scholar 

  • Hertel J, Hirche C, Wissmann C, Ebert MP, Höcker M (2014) Transcription of the vascular endothelial growth factor receptor-3 (VEGFR3) gene is regulated by the zinc finger proteins Sp1 and Sp3 and is under epigenetic control: transcription of vascular endothelial growth factor receptor 3. Cell Oncol (Dord) 37:131–145

    Article  CAS  Google Scholar 

  • Hida Y, Morita T, Fujita M, Miyasaka Y, Horita S, Fujioka Y, Nagashima K, Katoh H (1999) Vascular endothelial growth factor expression is an independent negative predictor in extrahepatic biliary tract carcinomas. Anticancer Res 19:2257–2260

    CAS  PubMed  Google Scholar 

  • Hida K, Kawamoto T, Ohga N, Akiyama K, Hida Y, Shindoh M (2011) Altered angiogenesis in the tumor microenvironment. Pathol Int 61:630–637

    Article  CAS  PubMed  Google Scholar 

  • Hida K, Ohga N, Akiyama K, Maishi N, Hida Y (2013) Heterogeneity of tumor endothelial cells. Cancer Sci 104:1391–1395

    Article  CAS  PubMed  Google Scholar 

  • Hira E, Ono T, Dhar DK, El-Assal ON, Hishikawa Y, Yamanoi A, Nagasue N (2005) Overexpression of macrophage migration inhibitory factor induces angiogenesis and deteriorates prognosis after radical resection for hepatocellular carcinoma. Cancer 103:588–598

    Article  CAS  PubMed  Google Scholar 

  • Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59:15–26

    Article  PubMed  Google Scholar 

  • Ho JW, Poon RT, Sun CK, Xue WC, Fan ST (2005) Clinicopathological and prognostic implications of endoglin (CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver. World J Gastroenterol 11:176–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho JW, Pang RW, Lau C, Sun CK, Yu WC, Fan ST, Poon RT (2006) Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 44:836–843

    Article  CAS  PubMed  Google Scholar 

  • Ho MC, Chen CN, Lee H, Hsieh FJ, Shun CT, Chang CL, Lai YT, Lee PH (2007) Placenta growth factor not vascular endothelial growth factor A or C can predict the early recurrence after radical resection of hepatocellular carcinoma. Cancer Lett 250:237–249

    Article  CAS  PubMed  Google Scholar 

  • Hood JL, Pan H, Lanza GM, Wickline SA (2009) Consortium for translational research in advanced imaging and nanomedicine (C-TRAIN). Lab Invest 89:1317–1328

    Google Scholar 

  • Hosaka T, Kimura H, Heishi T, Suzuki Y, Miyashita H, Ohta H, Sonoda H, Moriya T et al (2009) Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am J Pathol 175:430–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu B, Copeland NG, Gilbert DJ, Jenkins NA, Kilimann MW (2001) The paralemmin protein family: identification of paralemmin-2, an isoform differentially spliced to AKAP2/AKAP-KL, and of palmdelphin, a more distant cytosolic relative. Biochem Biophys Res Commun 285:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Hu TH, Huang CC, Wu CL, Lin PR, Liu SY, Lin JW, Chuang JH, Tai MH (2005a) Increased endostatin/collagen XVIII expression correlates with elevated VEGF level and poor prognosis in hepatocellular carcinoma. Mod Pathol 18:663–672

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Petrasch-Parwez E, Laue MM, Kilimann MW (2005b) Molecular characterization and immunohistochemical localization of palmdelphin, a cytosolic isoform of the paralemmin protein family implicated in membrane dynamics. Eur J Cell Biol 84:853–866

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Yang HY, Hsu YF, Chiu PT, Ou G, Hsu MJ (2014) Src contributes to IL-6-induced vascular endothelial growth factor-C expression in lymphatic endothelial cells. Angiogenesis 17:407–418

    Article  CAS  PubMed  Google Scholar 

  • Hur J, Jang JH, Oh IY, Choi JI, Yun JY, Kim J, Choi YE, Ko SB, Kang JA, Lee SE et al (2014) Human podoplanin-positive monocytes and platelets enhance lymphangiogenesis through the activation of the podoplanin/CLEC-2 axis. Mol Ther 22:1518–1529.-

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M, Marchini JF, Schissler A, Padera RF et al (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida H, Honda M, Kawai HF, Yamashita T, Shirota Y, Wang BC, Miao H, Kaneko S (2005) Ephrin-A1 expression contributes to the malignant characteristics of {alpha}-fetoprotein producing hepatocellular carcinoma. Gut 54:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imura S, Miyake H, Izumi K, Tashiro S, Uehara H (2004) Correlation of vascular endothelial cell proliferation with microvessel density and expression of vascular endothelial growth factor and basic fibroblast growth factor in hepatocellular carcinoma. J Med Invest 51:202–209

    Article  PubMed  Google Scholar 

  • Infante T, Mancini FP, Lanza A, Soricelli A, de Nigris F, Napoli C (2015) Polycomb YY1 is a critical interface between epigenetic code and miRNA machinery after exposure to hypoxia in malignancy. Biochim Biophys Acta 1853:975–986

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Nakasato Y, Kobayashi S, Yamazaki Y, Aoki T (2003) A study on angiogenesis-related matrix metalloproteinase networks in primary hepatocellular carcinoma. J Exp Clin Cancer Res 22:461–470

    CAS  PubMed  Google Scholar 

  • Ito S, Miyashita H, Suzuki Y, Kobayashi M, Satomi S, Sato Y (2013) Enhanced cancer metastasis in mice deficient in vasohibin-1 gene. PLoS ONE 8, e73931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK, Koenig GC, Dellian M, Fukumura D, Munn LL, Melder RJ (1996) Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev 15:195–204

    Article  CAS  PubMed  Google Scholar 

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    Article  CAS  PubMed  Google Scholar 

  • Ji RC (2014) Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett 346:6–16

    Article  CAS  PubMed  Google Scholar 

  • Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, Hsu CH, Hu TH et al (2013) Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 31:3517–3524

    Article  CAS  PubMed  Google Scholar 

  • Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl) 91:431–437

    Article  CAS  Google Scholar 

  • Kataru RP, Lee YG, Koh GY (2014) Interactions of immune cells and lymphatic vessels. Adv Anat Embryol Cell Biol 214:107–118

    Article  PubMed  Google Scholar 

  • Kawakita T, Shiraki K, Yamanaka Y, Yamaguchi Y, Saitou Y, Enokimura N, Yamamoto N et al (2004) Functional expression of TWEAK in human hepatocellular carcinoma: possible implication in cell proliferation and tumor angiogenesis. Biochem Biophys Res Commun 318:726–733

    Article  CAS  PubMed  Google Scholar 

  • Keeley EC, Mehrad B, Strieter RM (2011) Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res 317:685–690

    Article  CAS  PubMed  Google Scholar 

  • Kiefer F, Siekmann AF (2011) The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 68:2811–2830

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Abou-Alfa GK (2014) The role of tyrosine kinase inhibitors in hepatocellular carcinoma. Clin Adv Hematol Oncol 12:36–41

    PubMed  Google Scholar 

  • Kim KR, Moon HE, Kim KW (2002) Hypoxia-induced angiogenesis in human hepatocellular carcinoma. J Mol Med 80:703–714

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park HS, Son HJ, Moon WS (2004) The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma (in Korean). Kor J Hepatol 10:62–72

    Google Scholar 

  • Kimura H, Nakajima T, Kagawa K, Deguchi T, Kakusui M, Katagishi T, Okanoue T et al (1998) Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry. Liver 18:14–19

    Article  CAS  PubMed  Google Scholar 

  • Klenotic PA, Page RC, Li W, Amick J, Misra S, Silverstein RL (2013) Molecular basis of antiangiogenic thrombospondin-1 type 1 repeat domain interactions with Cd36. Arterioscler Thromb Vasc Biol 33:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korpelainen EI, Karkkainen M, Gunji Y, Vikkula M, Alitalo K (1999) Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant TIE-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY, Zheng L (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54:948–955

    Article  CAS  PubMed  Google Scholar 

  • Lawler 2002. http://www.ncbi.nlm.nih.gov/pubmed/12003665

  • Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY, Kim CW (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE 8, e84256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li Q (2014) Cancer stem cells and tumor metastasis (review). Int J Oncol 44:1806–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Tu M, Han B, Gu Y, Xue X, Sun J, Ge Q, Miao Y, Qian Z, Gao W (2014) Vasohibin 2 decreases the cisplatin sensitivity of hepatocarcinoma cell line by downregulating p53. PLoS ONE 9, e90358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim HX, Hong HJ, Cho D, Kim TS (2014) IL-18 enhances immunosuppressive responses by promoting differentiation into monocytic myeloid-derived suppressor cells. J Immunol 193:5453–5460

    Article  CAS  PubMed  Google Scholar 

  • Lin YL, Liang YC, Chiang BL (2007) Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J Leukoc Biol 82:1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Han MM, Wang F, Xu LL, Yu HX, Yang PY (2014) CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression. Cell Death Dis 5, e1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lai L, Chen Q, Song Y, Xu S, Ma F, Wang X, Wang J, Yu H, Cao X, Wang Q (2012) MicroRNA-494 required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. Immunol 188:5500–5510

    Google Scholar 

  • Liu Y, Zhao L, Li D, Yin Y, Zhang CY, Li J, Zhang Y (2013) Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development. Protein Cell 4:932–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Lin N, Chen Z, Xu R (2015) Hypoxia-induced secretion of platelet-derived growth factor-BB by hepatocellular carcinoma cells increases activated hepatic stellate cell proliferation, migration and expression of vascular endothelial growth factor-A. Mol Med Rep 11:691–697

    CAS  PubMed  Google Scholar 

  • Luo D, Wang Z, Wu J, Jiang C, Wu J (2014) The role of hypoxia inducible factor-1 in hepatocellular carcinoma. Biomed Res Int 2014:409272

    PubMed  PubMed Central  Google Scholar 

  • Madanecki et al. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23124858

  • Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie JJ, Rochaix P, Girard JP (2011) Human solid tumors contain high endothelial venules: association with T-and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71:5678–5687

    Article  CAS  PubMed  Google Scholar 

  • Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard JP (2013) High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J Immunol 191:2001–2008

    Article  CAS  PubMed  Google Scholar 

  • Martinez MC, Andriantsitohaina R (2011) Microparticles in angiogenesis: therapeutic potential. Circ Res 109:110–119

    Article  CAS  PubMed  Google Scholar 

  • Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, Miyazaki M, Sakakibara M et al (2013) TIE-2 expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 57:1416–1425

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Roufail S, Inder R, Caesar C, Karnezis T, Shayan R, Farnsworth RH et al (2013) Signaling for lymphangiogenesis via VEGFR-3 is required for the early events of metastasis. Clin Exp Metastasis 30:819–832

    Article  CAS  PubMed  Google Scholar 

  • McMahon G (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist 5(suppl 1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Medina RJ, O’Neill CL, O’Doherty TM, Knott H, Guduric-Fuchs J, Gardiner TA, Stitt AW (2011) Myeloid angiogenic cells act as alternative M2 macrophages an modulate angiogenesis through interleukin-8. Mol Med 17:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miayahara K, Nouso K, Morimoto Y, Takeuchi Y, Hagihara H, Kuwaki K, Onishi H et al (2013) Pro-angiogenic cytokines for prediction of outcomes in patients with advanced hepatocellular carcinoma. Br J Cancer 109:2072–2078

    Article  CAS  Google Scholar 

  • Migliozzi MT, Mucka P, Bielenberg DR (2014) Lymphangiogenesis and metastasis-A closer look at the neuropilin/semaphorin3 axis. Microvasc Res. doi:10.1016/j.mcr.2014.07.006

    PubMed  PubMed Central  Google Scholar 

  • Minhajat R, Mori D, Yamasaki F, Sugita Y, Satoh T, Tokunaga O (2006) Organ-specific endoglin (CD105) expression in the angiogenesis of human cancers. Pathol Int 56:717–723

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, Yoshidome H et al (2003) Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology 37:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Yoshimatsu Y, Akatsu Y, Mishima K, Fukayama M, Atabe T, Miyazono K (2014) Expression of platelet-derived growth factor receptor β is maintained by Prox1 in lymphatic endothelial cells and is required for tumor lymphangiogenesis. Cancer Sci 105:1116–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möbius C, Demuth C, Aigner T, Wiedmann M, Wittekind C, Mössner J, Hauss J, Witzigmann H (2007) Evaluation of VEGF A expression and microvascular density as prognostic factors in extrahepatic cholangiocarcinoma. Eur J Surg Oncol 33:1025–1029

    Article  PubMed  Google Scholar 

  • Monu NR, Frey AB (2012) Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship. Immunol Invest 41:595–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon WS, Rhyu KH, Kang MJ, Lee DG, Yu HC, Yeum JH, Koh GY, Tarnawski AS (2003) Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod Pathol 16:552–557

    Article  PubMed  Google Scholar 

  • Moon EJ, Jeong CH, Jeong JW, Kim KR, Yu DY, Murakami S, Kim CW, Kim KW (2004) Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1alpha. FASEB J 18:382–384

    CAS  PubMed  Google Scholar 

  • Morinaga S, Imada T, Shimizu A, Akaike M, Sugimasa Y, Takemiya S, Takanashi Y (2001) Angiogenesis in hepatocellular carcinoma as evaluated by alpha smooth muscle actin immunohistochemistry. Hepato-Gastroenterology 48:224–228

    CAS  PubMed  Google Scholar 

  • Moschetta M, Mishima Y, Sahin I, Manier S, Göavey S, Vacca A, Roccaro AM, Ghobrial IM (2014) Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta 1846:26–39

    CAS  PubMed  Google Scholar 

  • Moserle et al. 2009. http://www.ncbi.nlm.nih.gov/pubmed/19925406

  • Murakami K, Kasajima A, Kawagishi N, Sekiguchi S, Fujishima F, Watanabe M, Sato Y et al (2014) The prognostic significance of vasohibin 1-associated angiogenesis in patients with hepatocellular carcinoma. Hum Pathol 45:589–597

    Article  CAS  PubMed  Google Scholar 

  • Musso O, Theret N, Heljasvaara R, Rehn M, Turlin B, Campion JP, Pihlajaniemi T et al (2001) Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen XVIII, in human liver cancers. Hepatology 33:868–876

    Article  CAS  PubMed  Google Scholar 

  • Muto J, Shirabe K, Yoshizumi T, Ikegami T, Aishima S, Ishigami K, Yonemitsu Y, Ikeda T, Soejima Y, Maehara Y (2014) The apelin-APJ system induces tumor arteriogenesis in hepatocellular carcinoma. Anticancer Res 34:5313–5320

    PubMed  Google Scholar 

  • Muto J, Shirabe K, Sugimachi K, Maehara Y (2015) Review of angiogenesis in hepatocellular carcinoma. Hepatol Res. doi:10.1111/hepr

    PubMed  Google Scholar 

  • Muturi HT, Dreesen JD, Nilewski E, Jastrow H, Giebel B, Ergun S, Singer BB (2013) Tumor and endothelial cell-derived microvesicles carry distinct CEACAMs and influence T-cell behavior. PLoS ONE 8:e74654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T (2009) Changes in expression of bile canalicular CD10 and sinusoidal CD105 (endoglin) in peritumoral hepatic tissue. Tumori 95:495–500

    CAS  PubMed  Google Scholar 

  • Ng KT, Xu A, Cheng Q, Guo DY, Lim ZX, Sun CK, Fung JH, Poon RT, Fan ST, Lo CM, Man K (2014) Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol Cancer 13:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen SR, Hammer T, Gibson J, Pepper MS, Nisato RE, Dissing S, Tritsaris K (2013) IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression. Mirocirculation 20:555–564

    Article  CAS  Google Scholar 

  • Ning H, Shao QQ, Ding KJ, Gao DX, Lu QL, Cao QW, Niu ZH, Fu Q, Zhang CH et al (2012) Tumor-infiltrating regulatory T cells are positively correlated with angiogenic status in renal cell carcinoma. Chin Med J (Engl) 125:2120–2125

    CAS  Google Scholar 

  • Nissim Ben Efrain AH, Levi-Schaffer F (2014) Roles of eosinophils in the modulation of angiogenesis. Chem Immunol Allergy 99:138–154

    Article  CAS  Google Scholar 

  • Niu RF, Zhang L, Xi GM, Wie XY, Yang Y, Shi YR, Hao XS (2007) Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 26:385–394

    CAS  PubMed  Google Scholar 

  • Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, Heikamp E, McDevitt MR et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Morishita A, Jian G, Mimura S, Kato K, Nomura K, Tani J, Miyoshi H, Yoneyama H et al (2013) Expression of angiogenic factors in hepatocarcinogenesis: identification by antibody arrays. Oncol Rep 30:2476–2480

    CAS  PubMed  Google Scholar 

  • Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23:263–272

    Article  CAS  PubMed  Google Scholar 

  • Okita S, Kondoh S, Shiraishi K, Kaino S, Hatano S, Okita K (1998) Expression of vascular endothelial growth factor correlates with tumor progression in gallbladder cancer. Int J Oncol 12:1013–1018

    CAS  PubMed  Google Scholar 

  • Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160:1224–1232

    CAS  PubMed  Google Scholar 

  • Pang and Poon 2006. http://www.ncbi.nlm.nih.gov/pubmed/16564617

  • Paradis V, Bieche I, Dargere D, Laurendeau I, Nectoux J, Degott C, Belghiti J, Vidaud M et al (2003) A quantitative gene expression study suggests a role for angiopoietins in focal nodular hyperplasia. Gastroenterology 124:651–659

    Article  PubMed  Google Scholar 

  • Park YN, Kim YB, Yang KM, Park C (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 124:1061–1065

    CAS  PubMed  Google Scholar 

  • Patenaude A, Parker J, Karsan A (2010) Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res 79:217–223

    Article  CAS  PubMed  Google Scholar 

  • Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pezzolo A, Parodi F, Corrias MV, Cinti R, Gambini C, Pistoia V (2007) Tumor origin of endothelial cells in human neuroblastoma. J Clin Oncol 25:376–383

    Article  CAS  PubMed  Google Scholar 

  • Pillay J, Tak T, Kamp VM, Koenderman L (2013) Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 70:3813–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ping YF, Bian XW (2011) Concise review: contribution of cancer stem cells to neovascularization. Stem Cells 29:888–894

    Article  CAS  PubMed  Google Scholar 

  • Png KJ, Halberg N, Yoshida M, Tavazoie SF (2011) A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481:190–194

    Article  PubMed  CAS  Google Scholar 

  • Podgrabinska S, Skobe M (2014) Role of lymphatic vasculature in regional and distant metastases. Microvasc Res 95C:58–52

    Google Scholar 

  • Poon RT, Chung KK, Cheung ST, Lau CP, Tong SW, Leung KL, Yu WC, Tuszynski GP et al (2004) Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma. Clin Cancer Res 10:4150–4157

    Article  CAS  PubMed  Google Scholar 

  • Pula B, Witkiewicz W, Dziegiel P, Podhorska-Okolow M (2013) Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. Int J Oncol 42:1849–1857

    CAS  PubMed  Google Scholar 

  • Rana S, Malinowska K, Zöller M (2013) Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15:281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Tsui HT, Poon RT, Ng IO, Li Z, Chen Y, Jiang G, Lau C, Yu WC, Bacher M et al (2003) Macrophage migration inhibitory factor: roles in regulating tumor cell migration and expression of angiogenic factors in hepatocellular carcinoma. Int J Cancer 107:22–29

    Article  CAS  PubMed  Google Scholar 

  • Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribatti D (2004) The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 8:294–300

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2009) The paracrine role of Tie-2-expressing monocytes in tumor angiogenesis. Stem Cells Dev 18:703–706

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Nico B, Sansonno D, Dammacco F (2006) Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. Cancer Treat Rev 32:437–444

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Vacca A (2007) The structure of the vascular network of tumors. Cancer Lett 248:18–23

    Article  CAS  PubMed  Google Scholar 

  • Ruck P, Xiao JC, Kaiserling E (1995) Immunoreactivity of sinusoids in hepatocellular carcinoma: an immunohistochemical study using lectin UEA-1 and antibodies against endothelial markers, including CD34. Arch Pathol Lab Med 119:173–178

    CAS  PubMed  Google Scholar 

  • Russo E, Nitschké M, Halin C (2013) Dendritic cell interactions with lymphatic endothelium. Lymphat Res Biol 11:172–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, Ariel A et al (2015) Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10:562–573

    Article  CAS  PubMed  Google Scholar 

  • Sahin M, Sahin E, Gümüslü S, Erdogan A, Gültekin M (2010) DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability. Cancer Metastasis Rev 29:655–676

    Article  CAS  PubMed  Google Scholar 

  • Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10:359–370

    Article  CAS  PubMed  Google Scholar 

  • Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, Rice GE (2013) Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS ONE 8, e68451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G (2002) regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99:2703–2711

    Article  CAS  PubMed  Google Scholar 

  • Sancho-Bru P, Juez E, Moreno M, Khurdayan V, Morales-Ruiz M, Colmenero J, Arroyo V et al (2010) Hepatocarcinoma cells stimulate the growth, migration and expression of proangiogenic genes in human hepatic stellate cells. Liver Int 30:31–41

    Article  CAS  PubMed  Google Scholar 

  • Santoni M, Bracarda S, Nabissi M, Massari F, Conti A, Bria E, Tortora G, Santoni G et al (2014) CXC and CC chemokines as angiogenic modulators in nonhaematological tumors. Biomed Res Int 2014:768758

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Cameno P, Martin-Vilchez S, Lara-Pezzi E, Borque MJ, Salmeron J, Munoz de Rueda P et al (2006) Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV x protein. Am J Pathol 169:1215–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawai Y, Tamura S, Fukui K, Ito N, Imanaka K, Saeki A, Sakuda S, Kiso S, Matsuzawa Y (2003) Expression of ephrin-B1 in hepatocellular carcinoma: possible involvement in neovascularization. J Hepatol 39:991–996

    Article  CAS  PubMed  Google Scholar 

  • Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491

    Article  CAS  PubMed  Google Scholar 

  • Scartozzi M, Faloppi L, Svegliati Baroni G, Loretelli C, Piscaglia F, Iavarone M, Toniutto P et al (2014) VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study. Int J Cancer 135:1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Schauer D, Starlinger P, Zajc P, Alidzanovic L, Maier T, Buchberger E, Pop L, Gruenberger B, Brostjan C (2014) Monocytes with angiogenic potential are selectively induced by liver resection and accumulate near the site of liver regeneration. BMC Immunol 15:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmieder A, Michel J, Schönhaar K, Goerdt S, Schledzewski K (2012) Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K et al (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semela D, Dufour JF (2004) Angiogenesis and hepatocellular carcinoma. J Hepatol 41:864–880

    Article  PubMed  Google Scholar 

  • Seok et al. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23686433

  • Sharghi-Namini S, Tan E, Ong LL, Ge R, Asada HH (2014) DII4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci Rep 4:4031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma BK, Srinivasan R, Kapil S, Singla B, Chawla YK, Chakraborti A, Saini N, Duseja A et al (2013) Angiogenic and anti-angiogenic factor gene transcript level quantitation by quantitative real time PCR in patients with hepatocellular carcinoma. Mol Biol Rep 40:5843–5852

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, Yu W, Gao X, Xu Z, Hu GF (2014) Angiogenin stimulates ribosomal RNA transcription by epigenetic activation of the ribosomal DNA promoter. J Cell Physiol 229:521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Fisslthaler B, Zippel N, Frömel T, Hu J, Elgheznawy A, Heide H, Popp R, Fleming I (2013) MicroRNAs-223 antagonises angiogenesis by targeting β1 integrin and preventing growth factor signaling in endothelial cells. Circ Res 113:1320–1330

    Article  CAS  PubMed  Google Scholar 

  • Shih YT, Wang MC, Peng HH, Chen TF, Chen L, Chang JY, Chiu JJ (2012a) Modulation of chemotactic and pro-inflammatory activities of endothelial progenitor cells by hepatocellular carcinoma. Cell Signal 24:779–793

    Article  CAS  PubMed  Google Scholar 

  • Shih TC, Tien YJ, Wen CJ, Yeh TS, Yu MC, Huang CH, Lee YS, Yen TC, Hsieh SY (2012b) MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol 57:584–591

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Saito S, Morita K, Kitamura T, Morimoto M, Kiba T, Namata K, Tanaka K et al (2000) Detection of vascular endothelial growth factor and its receptor expression in human hepatocellular carcinoma biopsy specimens. J Gastroenterol Hepatol 15:640–646

    Article  CAS  PubMed  Google Scholar 

  • Shimoda K, Mori M, Shibuta K, Banner BF, Barnard GF (1999) Vascular endothelial growth factor/vascular permeability factor mRNA expression in patients with chronic hepatitis C and hepatocellular carcinoma. Int J Oncol 14:353–359

    CAS  PubMed  Google Scholar 

  • Sieghart W, Fellner S, Reiberger T, Ulbrich G, Ferlitsch A, Wacheck V, Peck-Radosavljevic M (2009) Differential role of circulating endothelial progenitor cells in cirrhotic patients with or without hepatocellular carcinoma. Dig Liver Dis 41:902–906

    Article  CAS  PubMed  Google Scholar 

  • Simantov R, Silverstein RL (2003) CD36: a critical anti-angiogenic receptor. Front Biosci 8:s874–s882

    Article  CAS  PubMed  Google Scholar 

  • Soff G (2003) Angiostatin and hepatocellular carcinoma. Hepatology 37:505–506

    Article  PubMed  Google Scholar 

  • Soloviev DA, Hazen SL, Szpak D, Bledzka KM, Ballantyne CM, Plow EF, Pluskota E (2014) Dual role of the leukocyte integrin αMβ2 in angiogenesis. J Immunol 193:4712–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Zhao XP, Song K, Shang ZJ (2013) Ephrin-A1 is up-regulated by hypoxia in cancer cells and promotes angiogenesis of HUVECs through a coordinated cross-talk with eNOS. PLoS ONE 8, e74464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Song H, Liang Y, Yin D, Zhang H, Zheng T, Wang J, Lu Z, Song X, Pei T et al (2014) Reciprocal activation between ATPase inhibitory factor 1 abd NF-kB drives hepatocellular carcinoma angiogenesis and metastasis. Hepatology 60:1659–1673

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodeling in cancer. Nat Rev Cancer 14:159–172

    Article  CAS  PubMed  Google Scholar 

  • Stellos K, Gawaz M (2007) Platelets and stromal cell-derived factor-1 in progenitor cell recruitment. Semin Thromb Hemost 33:159–164

    Article  CAS  PubMed  Google Scholar 

  • Stockmann C, Schadendorf D, Klose R, Helfrich I (2014) The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 4:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugawara Y, Makuuchi M, Harihara Y, Noie T, Inoue K, Kubota K, Takayama T (1999) Tumor angiogenesis in gallbladder carcinoma. Hepato-Gastroenterology 46:1682–1686

    CAS  PubMed  Google Scholar 

  • Sugimachi K, Tanaka S, Taguchi K, Aishima S, Shimada M, Tsuneyoshi M (2003) Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma. J Clin Pathol 56:854–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XT, Yuan XW, Zhu HT, Deng ZM, Yu DC, Zhou X, Ding YT (2012) Endothelial precursor cells promote angiogenesis in hepatocellular carcinoma. World J Gastroenterol 18:4925–4933

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundar SS, Ganesan TS (2007) Role of lymphangiogenesis in cancer. J Clin Oncol 25:4298–4307

    Article  CAS  PubMed  Google Scholar 

  • Swartz MA (2014) Immunomodulatory roles of lymphatic vessels in cancer progression. Cancer Immunol Res 2:701–707

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH (2013) Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 288:34343–34351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi A, Kawana K, Tomio K, Yamashita A, Isobe Y, Nagasaka K, Koga K, Inoue T et al (2014) Matrix metalloproteinase (MMP)-9 in cancer associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS ONE 9, e89605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi S (2011) Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol Pharm Bull 34:1785–1788

    Article  CAS  PubMed  Google Scholar 

  • Tan et al. 2013. http://www.ncbi.nlm.nih.gov/pubmed/24113869

  • Tanaka S, Sugimachi K, Yamashita Y, Shirabe K, Shimada M, Wands JR, Sugimachi K (2003) Angiogenic switch as a molecular target of malignant tumors. J Gastroenterol 38(suppl 15):93–97

    CAS  PubMed  Google Scholar 

  • Tang D, Nagano H, Yamamoto H, Wada H, Nakamura M, Kondo M, Ota H, Yoshioka S et al (2006) Angiogenesis in cholangiocellular carcinoma: expression of vascular endothelial growth factor, angiopoietin-1/2, thrombospondin-1 and clinicopathological significance. Oncol Rep 15:525–532

    CAS  PubMed  Google Scholar 

  • Tao KS, Dou KF, Wu XA (2004) Expression of angiostatin cDNA in human hepatocellular carcinoma cell line SMMC-7721 and its effect on implanted carcinoma in nude mice. World J Gastroenterol 10:1421–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, De Leo G, Alessandro R (2012) Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer 130:2033–2043

    Article  CAS  PubMed  Google Scholar 

  • Taylor DD, Gercel-Taylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33:441–454

    Article  CAS  PubMed  Google Scholar 

  • Tecchio C, Cassatella MA (2014) Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chem Immunol Allergy 99:123–137

    Article  CAS  PubMed  Google Scholar 

  • Tecchio C, Scapini P, Pizzolo G, Cassatella MA (2013) On the cytokines produced by human neutrophils in tumors. Semin Cancer Biol 23:159–170

    Article  CAS  PubMed  Google Scholar 

  • Ten Dijke P, Egorova AD, Goumans MJ, Poelmann RE, Hierck BP (2012) TGF-β1 signaling in endothelial-to-mesenchymal transition: the role of shear stress and primary cilia. Sci Signal 5:pt2

    PubMed  Google Scholar 

  • Tewait EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, Conaway MR, Bender TP et al (2012) Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120:4772–4782

    Article  CAS  Google Scholar 

  • Thelen A, Jonas S, Benckert C, Weichert W, Schott E, Bötcher C, Dietz E, Wiedenmann B, Neuhaus P, Scholz A (2009) Tumor-associated lymphangiogenesis correlates with prognosis after resection of human hepatocellular carcinoma. Ann Surg Oncol 16:1222–1230

    Article  PubMed  Google Scholar 

  • Thelen A, Scholz A, Weichert W, Wiedenmann B, Neuhaus P, Gessner R, Benckert C et al (2010) Tumor-associated angiogenesis and lymphangiogenesis correlate with progression of intrahepatic cholangiocarcinoma. Am J Gastroenterol 105:1123–1132

    Article  PubMed  Google Scholar 

  • Thuma F, Zöller M (2014) Outsmart tumor exosomes to steal the cancer initiating cell its niche. Semin Cancer Biol 28:39–50

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Huang P, Zhao Z, Tang W, Xia J (2014) HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL expression. Cell Physiol Biochem 34:1536–1546

    Article  CAS  PubMed  Google Scholar 

  • Torimura T, Sata M, Uena T, Kin M, Tsuji R, Suzaku K, Hashimoto O, Sugawara H et al (1998) Increased expression of vascular endothelial growth factor is associated with tumor progression in hepatocellular carcinoma. Hum Pathol 29:986–991

    Article  CAS  PubMed  Google Scholar 

  • Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, Sakata R, Hashimoto O et al (2004) Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol 40:799–807

    Article  CAS  PubMed  Google Scholar 

  • Van Balkom et al. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23532734

  • Vandooren J, Van den Steen PE, Opdenakker G (2013) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol 48:222–272

    Article  CAS  PubMed  Google Scholar 

  • Van Laake et al. 2006. http://www.ncbi.nlm.nih.gov/pubmed/17088457

  • Verma A (2006) Oxygen-sensing in tumors. Curr Opin Clin Nutr Metab Care 9:366–378

    Article  CAS  PubMed  Google Scholar 

  • Voigtländer T, David S, Thamm K, Schlué J, Metzger J, Manns MP, Lankisch TO (2014) Angiopoietin-2 and biliary diseases: elevated serum, but not bile levels are associated with cholangiocarcinoma. PLoS ONE 9, e97046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Von Marschall Z, Cramer T, Hocker M, Finkenzeller G, Wiedenmann B, Rosewicz S (2001) Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 48:87–96

    Article  Google Scholar 

  • Voronov E, Carmi Y, Apte RN (2014) The role of IL-1 tumor-mediated angiogenesis. Front Physiol 5:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada H, Nagano H, Yamamoto H, Yang Y, Kondo M, Ota H, Nakamura M, Yoshioka S et al (2006) Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1 alpha. Liver Int 26:414–423

    Article  CAS  PubMed  Google Scholar 

  • Walsh TG, Metharom P, Berndt MC (2014) The functional role of platelets in the regulation of angiogenesis. Platelets 15:1–13

    Google Scholar 

  • Wang Q, Tian X, Zhang C, Wang Q (2012) Upregulation of vasohibin-1 expression with angiogenesis and poor prognosis of hepatocellular carcinoma after curative surgery. Med Oncol 29:2727–2736

    Article  CAS  PubMed  Google Scholar 

  • Wang WQ, Liu L, Xu HX, Luo GP, Chen T, Wu CT, Xu YF, Xu J, Liu C, Zhang B et al (2013) Intratumoral α-SMA enhances the prognostic potency of CD34 associated with maintenance of microvessel integrity in hepatocellular carcinoma and pancreatic cancer. PLoS ONE 8, e71189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watari K, Shibata T, Kawahara A, Sata K, Nabeshima H, Shinoda A, Abe H, Azuma K et al (2014) Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS ONE 9, e99568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watson SP, Lowe K, Finney BA (2014) Platelets in lymph vessel development and integrity. Adv Anat Embryol Cell Biol 214:93–105

    Article  PubMed  Google Scholar 

  • Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, Wymant J et al (2014) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. doi:10.1038/onc.2013.560

    PubMed  Google Scholar 

  • Webber et al. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25662446

  • Wickersheim A, Kerber M, de Miguel LS, Plate KH, Machein MR (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Wiggers JK, Ruys AT, Groot Koerkamp B, Beuers U, Ten Kate FJ, van Gulik TM (2014) Differences in immunohistochemical biomarkers between intra-and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J Gastroenterol Hepatol 29:1582–1594

    Article  PubMed  Google Scholar 

  • Wilson CM, Naves T, Vincent F, Melloni B, Bonnaud F, Lalloué F, Jauberteau MO (2014a) Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors. J Cell Sci. pii:jcs. 149336

    Google Scholar 

  • Wilson GK, Tennant DA, McKeating JA (2014a) Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J Hepatol 61:1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Witte MH, Jones K, Wilting J, Dictor M, Selg M, McHale M, Geshenwald JE, Jackson DG (2006) Structure function relationships in the lymphatic system and implications for cancer biology. Cancer Metastasis Rev 25:159–184

    Article  PubMed  Google Scholar 

  • Wu YY, Chen L, Wang GL, Zhang YX, Zhou JM, He S, Qin J, Zhu YY (2013) Inhibition of hepatocellular carcinoma growth and angiogenesis by dual silencing of NET-1 and VEGF. J Mol Histol 44:433–445

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Fu Z, Zhou S, Gong J, Liu CA, Qiao Z, Li S (2014) HIF-1α and HIF-2α: siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation. PLoS ONE 9, e88913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang Q, Chen W, Ren M, Wang J, Zhang H, Deng DY, Zhang L, Shang C, Chen Y (2014) Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by a dual blockade of VEGFR2 and MET. Clin Cancer Res 20:2959–2970

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Cheng S, Tong R, Lv Z, Ding C, Du C, Xie H, Zhou L, Wu J, Zheng S (2014) BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma. Lab Invest 94:252–261

    Article  CAS  PubMed  Google Scholar 

  • Xiong YQ, Sun HC, Zhang W, Zhu XD, Zhuang PY, Zhang JB, Wang L, Wu WZ et al (2009) Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res 15:4838–4846

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Gao W, Sun B, Xu Y, Han B, Wang F, Zhang Y, Sun J, Wei J, Lu Z, Zhu Y et al (2013) Vasohibin 2 is transcriptionally activated and promotes angiogenesis in hepatocellular carcinoma. Oncogene 32:1724–1734

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Zhang Y, Zhi Q, Tu M, Xu Y, Sun J, Wei J, Lu Z, Miao Y, Gao W (2014) MiR200-upregulated vasohibin 2 promotes malignant transformation of tumors by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. Cell Commun Signal 12:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi R, Yano H, Nakashima O, Akiba J, Nishida N, Kurogi M, Kojiro M (2006) Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol 21:152–160

    Article  CAS  PubMed  Google Scholar 

  • Yang ZF, Poon RT (2008) Vascular changes in hepatocellular carcinoma. Anat Rec (Hoboken) 291:721–734

    Article  CAS  Google Scholar 

  • Yang M, Chen J, Su F, Yu B, Su F, Lin L, Huang JD, Song E (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ, Ye QH, Qin LX (2014) MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting HGF-cmet pathway. Hepatology 59:1874–1885

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Pan Y, Chen J, Sun X, Qiu Y, Ding Y (2007) Endoglin (CD105) expression in angiogenesis of primary hepatocellular carcinomas: analysis using tissue microarrays and comparisons with CD34 and VEGF. Ann Clin Lab Sci 37:39–48

    CAS  PubMed  Google Scholar 

  • Yao L, Dong H, Luo Y, Du J, Hu W (2014) Net platelet angiogenic activity (NPAA) correlates with progression and prognosis of non-small cell lung cancer. PLoS ONE 9, e96206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye XZ, Yu SC, Bian XW (2010) Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J Genet Genom 37:423–430

    Article  CAS  Google Scholar 

  • Yoder 2012. http://www.ncbi.nlm.nih.gov/pubmed/22762017

  • Yoshimatsu Y, Lee YG, Akatsu Y, Taguchi L, Suzuki HI, Cunha SI, Maruyama K et al (2013) Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc Natl Acad Sci U S A 110:18940–18945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q (2005) The dynamic roles of angiopoietins in tumor angiogenesis. Future Oncol 1:475–484

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Sun X, Qiu Y, Zhou J, Wu Y, Zhuang L, Chen J, Ding Y (2007a) Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma. Clin Cancer Res 13:3814–3824

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Zhuang L, Sun X, Chen J, Yao Y, Meng K, Ding Y (2007b) Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma. BMC Cancer 7:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu DC, Chen J, Sun XT, Zhuang LY, Jiang CP, Ding YT (2010a) Mechanism of endothelial progenitor cell recruitment into neo-vessels in adjacent non-tumor tissues in hepatocellular carcinoma. BMC Cancer 10:435

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu DC, Chen J, Ding YT (2010b) Hypoxic and highly angiogenic non-tumor tissues surrounding hepatocellular carcinoma: the ‘niche’ of endothelial progenitor cells. Int J Mol Sci 11:2901–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu et al. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24055369

  • Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360

    Article  PubMed  Google Scholar 

  • Zeng W, van den Berg A, Huitema S, Gouw AS, Molema G, de Jong KP (2014) Correlation of microRNA-16, microRNA-21 and microRNA-101 expression with cyclooxygenase-2 expression and angiogenic factors in cirrhotic and noncirrhotic human hepatocellular carcinoma. PLoS ONE 9, e95826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang ZL, Liu ZS, Sun Q (2006) Expression of angiopoietins, Tie2 and vascular endothelial growth factor in angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol 12:4241–4245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Han C, Zhu H, Song K, Wu T (2013) miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). Am J Pathol 182:1629–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhao CG, Sun HY, Zheng WE, Chen H (2014) Expression characteristics of KAI1 and vascular endothelial growth factor and their diagnostic values for hepatocellular carcinoma. Gut Liver. doi:10.5009/gnl13331

    Google Scholar 

  • Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015a) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinforma 13:17–24

    Article  Google Scholar 

  • Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y (2015b) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao QT, Yue SQ, Cui Z, Wang Q, Cui X, Zhai HH, Zhang LH, Dou KF (2006) Potential involvement of the cyclooxygenase-2 pathway in hepatocellular carcinoma-associated angiogenesis. Life Sci 80:484–492

    Article  PubMed  CAS  Google Scholar 

  • Zhao WB, Li Y, Liu X, Zhang LY, Wang X (2008) Evaluation of PRL-3 expression, and its correlation with angiogenesis and invasion in hepatocellular carcinoma. Int J Mol Med 22:187–192

    CAS  PubMed  Google Scholar 

  • Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, Wang Q (2013) MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett 333:159–169

    Article  CAS  PubMed  Google Scholar 

  • Zhou JJ, Zheng S, Sun LF, Zheng L (2014) MicroRNA regulation network in colorectal cancer metastasis. World J Biol Chem 5:301–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Shao Q, Sun X, Deng Z, Yuan X, Yu D, Zhou X, Ding Y (2012a) The mobilization, recruitment and contribution of bone marrow-derived endothelial progenitor cells to the tumor neovascularization occur at an early stage and throughout the entire process of hepatocellular carcinoma growth. Oncol Rep 28:1217–1224

    CAS  PubMed  Google Scholar 

  • Zhu H, Shao Q, Sun X, Deng Z, Yuan X, Zhou X, Ding Y (2012b) Bone marrow cells: important role on neovascularization of hepatocellular carcinoma. J Gastroenterol Hepatol 27:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z, Wang L, Yang XR, Hu J, Wan JL et al (2013) MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis 34:2071–2079

    Article  CAS  PubMed  Google Scholar 

  • Zhu LM, Shi DM, Dai Q, Cheng XJ, Yao WY, Sun PH, Ding Y, Qiao MM, Wu YL et al (2014a) Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget 5:5403–5415

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Liu X, Wang S, Yan X, Tang Z, Wu K, Li Y, Liu F (2014b) Hepatitis C virus core protein induces hypoxia-inducible factor 1α-mediated vascular endothelial growth factor expression in Huh7.5.1 cells. Mol Med Rep 9:2010–2014

    CAS  PubMed  Google Scholar 

  • Zhu K, Pan Q, Jia LQ, Dai Z, Ke AW, Zeng HY, Tang ZY, Fan J, Zhou J (2014c) MiR-302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial-mesenchymal transition of endothelial cells. Sci Rep 4:5524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang PY, Wang JD, Tang ZH, Zhou XP, Yang Y, Quan ZW, Liu YB, Shen J (2014) Peritumoral neuropilin-1 and VEGF receptor-2 expression increases time to recurrence in hepatocellular carcinoma patients undergoing curative hepatectomy. Oncotarget 5:11121–11132

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuo W, Luo C, Wang X, Song X, Fu Y, Luo Y (2010) Endostatin inhibits tumour lymphangiogenesis and lymphatic metastasis via cell surface nucleolin on lymphangiogenic endothelial cells. J Pathol 222:249–260

    Article  CAS  PubMed  Google Scholar 

  • Zhuo W, Chen Y, Song X, Luo Y (2011) Endostatin specifically targets both tumor blood vessels and lymphatic vessels. Front Med 5:336–340

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Zimmermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Zimmermann, A. (2016). Angiogenesis in Liver Cancer. In: Tumors and Tumor-Like Lesions of the Hepatobiliary Tract. Springer, Cham. https://doi.org/10.1007/978-3-319-26587-2_186-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26587-2_186-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26587-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics