Skip to main content

Advertisement

Log in

Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Cancer cells, both in vivo and in vitro, have been demonstrated to release membranous structures, defined as microvesicles or exosomes, consisting of an array of macromolecules derived from the originating cells, including proteins, lipids, and nucleic acids. While only recently have the roles of these vesicular components in intercellular communication become elucidated, significant evidence has demonstrated that tumor exosomes can exert a broad array of detrimental effects on the immune system—ranging from apoptosis of activated cytotoxic T cells to impairment of monocyte differentiation into dendritic cells, to induction of myeloid-suppressive cells and T regulatory cells. Immunosuppressive exosomes of tumor origin can be found within neoplastic lesions and in biologic fluids from cancer patients, implying a potential role of these pathways in in vivo tumor progression and systemic paraneoplastic syndromes. Through the expression of molecules involved in angiogenesis promotion, stromal remodeling, signaling pathway activation through growth factor/receptor transfer, chemoresistance, and genetic intercellular exchange, tumor exosomes could represent a central mediator of the tumor microenvironment. By understanding the nature of these tumor-derived exosomes/microvesicles and their roles in mediating cancer progression and modulating the host immune response will significantly impact therapeutic approaches targeting exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taylor DD, Doellgast GJ (1979) Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Anal Biochem 98:53–59

    PubMed  CAS  Google Scholar 

  2. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nature Rev Immunol 9:581–593

    Google Scholar 

  3. Trams EG, Lauter CJ, Salem C Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of microvesicles. Biochim Biophys Acta 645:63–70

    PubMed  CAS  Google Scholar 

  4. Pan BT, Blostein R, Johnstone RM (1983) Loss of the transferrin receptor during the maturation of sheep reticulocytes in vitro: an immunological approach. Biochem J 210:37–47

    PubMed  CAS  Google Scholar 

  5. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    PubMed  CAS  Google Scholar 

  6. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    PubMed  CAS  Google Scholar 

  7. van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    PubMed  Google Scholar 

  8. Taylor DD, Homesley HD, Doellgast GJ (1980) Binding of specific peroxidase-labeled antibody to placental-type phosphatase on tumor-derived membrane fragments. Cancer Res 40:4064–4069

    PubMed  CAS  Google Scholar 

  9. Taylor DD, Homesley HD, Doellgast GJ (1983) Membrane-associated immunoglobulins in cyst and ascites fluids of ovarian cancer patients. Am J Reprod Immunol 3:7–11

    PubMed  CAS  Google Scholar 

  10. Taylor DD, Levy EM, Black PH (1985) Shed membrane vesicles: a mechanism for tumor induced immunosuppression. In: Mitchell MS, Reif AE (eds) Immunity to cancer. Academic Press, Orlando, pp 369–373

    Google Scholar 

  11. Taylor DD, Black PH (1986) Shedding of plasma membrane fragments: neoplastic and developmental importance. In: Steinberg M (ed) Developmental Biology. Plenum Press, New York, vol 3., pp 33–57

  12. Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar R, Qureshi M, Xiang J (2010) Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol 185:5268–5278

    PubMed  CAS  Google Scholar 

  13. Zumaquero E, Muñoz P, Cobo M, Lucena G, Pavón EJ, Martín A, Navarro P, García-Pérez A, Ariza-Veguillas A, Malavasi F, Sancho J, Zubiaur M (2010) Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70, and Lyn. Exp Cell Res 316:2692–2706

    PubMed  CAS  Google Scholar 

  14. Anand PK (2010) Exosomal membrane molecules are potent immune response modulators. Commun Integr Biol 3:405–408

    PubMed  Google Scholar 

  15. Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, Papworth GD, Watkins SC, Robbins PD, Larregina AT, Morelli AE (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180:3081–3090

    PubMed  CAS  Google Scholar 

  16. Prado N, Cañamero M, Villalba M, Rodríguez R, Batanero E (2010) Bystander suppression to unrelated allergen sensitization through intranasal administration of tolerogenic exosomes in mouse. Mol Immunol 47:2148–2151

    PubMed  CAS  Google Scholar 

  17. Rak J (2010) Microparticles in cancer. Semin Thromb Hemost 36:888–906

    PubMed  CAS  Google Scholar 

  18. Taylor DD, Gercel-Taylor C (2005) Tumor-derived exosomes as mediates of T-cell signaling defects. Brit J Cancer 92:305–311

    PubMed  CAS  Google Scholar 

  19. Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O'Neal W, Pickles RJ, Sheehan JK (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23:1858–1868

    PubMed  CAS  Google Scholar 

  20. Taylor DD, Bender DP, Gercel-Taylor C, Stanson J, Whiteside TL (2001) Modulation of TcR/CD3-zeta chain expression by a circulating factor derived from ovarian cancer patients. Br J Cancer 84:1624–1629

    PubMed  CAS  Google Scholar 

  21. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920

    PubMed  CAS  Google Scholar 

  22. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23:1541–1557

    PubMed  CAS  Google Scholar 

  23. Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883

    PubMed  CAS  Google Scholar 

  24. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nature Rev Mol Cell Biol 11:688–699

    CAS  Google Scholar 

  25. Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Ann Rev Cell Dev Biol 23:519–547

    CAS  Google Scholar 

  26. Doring T, Gotthardt K, Stieler J, Prange R (2010) γ2-Adaptin is functioning in the late endosomal sorting pathway and interacts with ESCRT-I and -III subunits. Biochim Biophys Acta 1803:1252–1264

    PubMed  Google Scholar 

  27. DeGassart A, Geminard C, Hoekstra D, Vidal M (2004) Exosome secretion: the art of reutilizing non-recycled proteins? Traffic 5:896–903

    CAS  Google Scholar 

  28. Buschow SI, Liefhebber JM, Wubbolts R, Stoorvogel W (2005) Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis 35:398–403

    PubMed  CAS  Google Scholar 

  29. Qu JL, Qu XJ, Zhao MF, Teng YE, Zhang Y, Hou KZ, Jiang YH, Yang XH, Liu YP (2009) The role of cbl family of ubiquitin ligases in gastric cancer exosome-induced apoptosis of Jurkat T cells. Acta Oncol 15:1–8

    Google Scholar 

  30. Wollert T, Hurley JH (2010) Molecular mechanisms of multivesicular body biogenesis by ESCRT complexes. Nature 464:864–869

    PubMed  CAS  Google Scholar 

  31. Katzmann DJ, Stefan CJ, Babst M, Emr SD (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol 162:413–423

    PubMed  CAS  Google Scholar 

  32. Skinner AM, O’Neill SL, Kurre P (2009) Cellular microvesicle pathways can be targeted to transfer genetic information between non-immune cells. PLoS One 4:e6219

    PubMed  Google Scholar 

  33. Min CK, Bang SY, Cho BA, Choi YH, Yang JS, Lee SH, Seong SY, Kim KW, Kim S, Jung JU, Choi MS, Kim IS, Cho NH (2008) Role of amphipathic helix of a herpes viral protein in membrane deformation and T cell receptor downregulation. PLoS Pathog 4:e1000209

    PubMed  Google Scholar 

  34. Chen J, Wang J, Meyers KR, Enns CA (2009) Transferrin-directed internalization and cycling of transferring receptor 2. Traffic 10:1488–1501

    PubMed  CAS  Google Scholar 

  35. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099

    PubMed  CAS  Google Scholar 

  36. Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9:4997–5000

    PubMed  CAS  Google Scholar 

  37. Muntasell A, Berger AC, Roche PA (2007) T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J 26:4263–4272

    PubMed  CAS  Google Scholar 

  38. Janiszewski M, DoCarmo AO, Pedro MA, Silva E, Knobel E, Laurindo FR (2004) Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: a novel vascular redox pathway. Crit Care Med 32:818–825

    PubMed  CAS  Google Scholar 

  39. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena ZL (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    PubMed  CAS  Google Scholar 

  40. Pfeffer SR (2010) Two Rabs for exosome release. Nat Cell Biol 12:3–4

    PubMed  CAS  Google Scholar 

  41. McCready J, Sims JD, Chan D, Jay DG (2010) Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 10:294

    PubMed  Google Scholar 

  42. Lee HM, Choi EJ, Kim JH, Kim TD, Kim YK, Kang C, Gho YS (2010) A membranous for of ICAM-1 on exosomes efficiently blocks leukocyte adhesion to activated endothelial cells. Biochem Biophys Res Commun 397:251–256

    PubMed  CAS  Google Scholar 

  43. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091

    PubMed  CAS  Google Scholar 

  44. Zöller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55

    PubMed  Google Scholar 

  45. Stinton LM, Eystathioy T, Selak S, Chan EK, Fritzler MJ (2004) Autoantibodies to protein transport and messenger RNA pathways: endosomes, lysosomes, Golgi complex, proteasomes, assemblyosomes, exosomes, and GW bodies. Clin Immunol 110:30–44

    PubMed  CAS  Google Scholar 

  46. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, Star RA (2007) Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292:F1657–F1661

    PubMed  CAS  Google Scholar 

  47. Viaud S, Théry C, Ploix S, Tursz T, Lapierre V, Lantz O, Zitvogel L, Chaput N (2010) Dendritic cell-derived exosomes for cancer immuntherapy: what's next? Cancer Res 70:1281–1285

    PubMed  CAS  Google Scholar 

  48. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    PubMed  CAS  Google Scholar 

  49. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222

    PubMed  CAS  Google Scholar 

  50. Simons M, Raposo G (2009) Exosomes: vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    PubMed  CAS  Google Scholar 

  51. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099

    PubMed  CAS  Google Scholar 

  52. Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M (2008) CD44 and EpCAM: cancer-initiating cell markers. Curr Mol Med 8:784–804

    PubMed  CAS  Google Scholar 

  53. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633

    PubMed  CAS  Google Scholar 

  54. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556

    PubMed  Google Scholar 

  55. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zöller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678

    PubMed  CAS  Google Scholar 

  56. Keller S, König AK, Marmé F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J, Altevogt P (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278:73–81

    PubMed  CAS  Google Scholar 

  57. Dolo V, D'Ascenzo S, Violini S, Pompucci L, Festuccia C, Ginestra A, Vittorelli ML, Canevari S, Pavan A (1999) Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis 17:131–140

    PubMed  CAS  Google Scholar 

  58. Dolo V, Ginestra A, Cassara D, Ghersi G, Nagase H, Vittorelli ML (1999) Shed membrane vesicles and selective localization of gelatinases and MMP-9/TIMP-1 complexes. Ann N Y Acad Sci 878:497–499

    PubMed  CAS  Google Scholar 

  59. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64:7045–7049

    PubMed  CAS  Google Scholar 

  60. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    PubMed  CAS  Google Scholar 

  61. McLellan AD (2009) Exosome release by primary B cells. Crit Rev Immunol 29:203–217

    PubMed  CAS  Google Scholar 

  62. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    PubMed  CAS  Google Scholar 

  63. Ichim TE, Zhong Z, Kaushal S, Zheng X, Ren X, Hao X, Joyce JA, Hanley HH, Riordan NH, Koropatnick J, Bogin V, Minev BR, Min WP, Tullis RH (2008) Exosomes as a tumor immune escape mechanism: possible therapeutic implications. J Transl Med 6:37

    PubMed  Google Scholar 

  64. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122

    PubMed  CAS  Google Scholar 

  65. Izquierdo-Useros N, Naranjo-Gómez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borràs FE, Puertas MC, Connor JH, Fernández-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez-Picado J (2009) Capture and transfer if HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113:2732–2741

    PubMed  CAS  Google Scholar 

  66. Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J (2010) HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog 6:e1000740

    PubMed  Google Scholar 

  67. Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018

    PubMed  CAS  Google Scholar 

  68. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    PubMed  CAS  Google Scholar 

  69. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106:3794–3799

    PubMed  Google Scholar 

  70. Viswanathan M, Sangiliyandi G, Vinod SS, Mohanprasad BK, Shanmugam G (2003) Genomic instability and tumor-specific alterations in oral squamous cell carcinomas assessed by inter-(simple sequence repeat) PCR. Clin Cancer Res 9:1057–1062

    PubMed  CAS  Google Scholar 

  71. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    PubMed  CAS  Google Scholar 

  72. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    PubMed  CAS  Google Scholar 

  73. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    PubMed  CAS  Google Scholar 

  74. Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, Tanavde V (2010) Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics 11(Suppl 1):S6

    PubMed  Google Scholar 

  75. Yuan XL, Chen L, Li MX, Dong P, Xue J, Wang J, Zhang TT, Wang XA, Zhang FM, Ge HL, Shen LS, Xu D (2010) Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clin Immunol 134:277–288

    PubMed  CAS  Google Scholar 

  76. Whiteside TL (2005) Tumour-derived exosomes or microvesicles: another mechanism of tumour escape from the host immune system? Br J Cancer 92:209–211

    PubMed  CAS  Google Scholar 

  77. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915

    PubMed  CAS  Google Scholar 

  78. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    PubMed  CAS  Google Scholar 

  79. Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A, Colone M, Arancia G, Gentile M, Seregni E, Valenti R, Ballabio G, Belli F, Leo E, Parmiani G, Rivoltini L (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterol 128:1796–1804

    CAS  Google Scholar 

  80. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 183:3720–3730

    PubMed  CAS  Google Scholar 

  81. Huber V, Filipazzi P, Iero M, Fais S, Rivoltini L (2008) More insights into the immunosuppressive potential of tumor exosomes. J Transl Med 6:63

    PubMed  Google Scholar 

  82. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9:5113–5119

    PubMed  CAS  Google Scholar 

  83. Taylor DD, Gercel-Taylor C, Weese JL (1989) Expression and shedding of mdr-1 antigen by variants of the murine B16 melanoma. Surg Forum 40:406–408

    Google Scholar 

  84. Taylor DD, Gercel-Taylor C, Gall SA (1996) Expression and shedding of CD44 isoforms by gynecologic cancer patients. J Soc Gynecol Invest 3:289–294

    CAS  Google Scholar 

  85. Taylor DD, Lyons KS, Gercel-Taylor C (2002) Shed membrane fragment-associated markers for endometrial and ovarian cancers. Gynecol Oncol 84:443–448

    PubMed  Google Scholar 

  86. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881

    PubMed  CAS  Google Scholar 

  87. Zindl CL, Chaplin DD (2010) Immunology: tumor immune evasion. Science 328:697–698

    PubMed  CAS  Google Scholar 

  88. Moserle L, Amadori A, Indraccolo S (2009) The angiogenic switch: implications in the regulation of tumor dormancy. Curr Mol Med 9:935–941

    PubMed  CAS  Google Scholar 

  89. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796:33–40

    PubMed  CAS  Google Scholar 

  90. Zwirner NW, Croci DO, Domaica CI, Rabinovich GA (2010) Overcoming the hurdles of tumor immunity by targeting regulatory pathways in innate and adaptive immune cells. Curr Pharm Des 16:255–267

    PubMed  CAS  Google Scholar 

  91. Soloski MJ (2001) Recognition of tumor cells by the innate immune system. Curr Opin Immunol 13:154–162

    PubMed  CAS  Google Scholar 

  92. Ashiru O, Boutet P, Fernández-Messina L, Agüera-González S, Skepper JN, Valés-Gómez M, Reyburn HT (2010) Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 70:481–489

    PubMed  CAS  Google Scholar 

  93. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    PubMed  CAS  Google Scholar 

  94. Frey AB (2006) Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest 116:2587–2590

    PubMed  CAS  Google Scholar 

  95. Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB (2006) CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176:2085–2094

    PubMed  CAS  Google Scholar 

  96. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, Li C, Cong Y, Kimberly R, Grizzle WE, Falkson C, Zhang HG (2007) Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178:6867–6875

    PubMed  CAS  Google Scholar 

  97. Soderberg A, Barral AM, Soderstrom M, Sander B, Rosen A (2007) Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radic Biol Med 43:90–99

    PubMed  Google Scholar 

  98. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rébé C, Ghiringhelli F (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    PubMed  CAS  Google Scholar 

  99. Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, Michalek S, Grizzle W, Zhang HG (2010) Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 176:2490–2499

    PubMed  CAS  Google Scholar 

  100. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88

    PubMed  CAS  Google Scholar 

  101. Wieckowski E, Whiteside TL (2006) Human tumor-derived vs dendritic cell derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36:247–254

    PubMed  CAS  Google Scholar 

  102. Tomihari M, Chung JS, Akiyoshi H, Cruz PD Jr, Ariizumi K (2010) DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res 70:5778–5787

    PubMed  CAS  Google Scholar 

  103. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020

    PubMed  CAS  Google Scholar 

  104. Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar D, Salles JP, Bonnerot C, Perret B, Record M (2004) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett 572:11–14

    PubMed  CAS  Google Scholar 

  105. Morelli AE (2006) The immune regulatory effect of apoptotic cells and exosomes on dendritic cells: its impact on transplantation. Am J Transplant 6:254–261

    PubMed  CAS  Google Scholar 

  106. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, Min WP (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T cell apoptosis. Blood Cells Mol Dis 35:169–173

    PubMed  CAS  Google Scholar 

  107. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114:560–568

    PubMed  CAS  Google Scholar 

  108. Clayton A, Tabi Z (2005) Exosomes and the MICA-NKG2D system in cancer. Blood Cells Mol Dis 34:206–213

    PubMed  CAS  Google Scholar 

  109. Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WT, Zhang HG (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176:1375–1385

    PubMed  CAS  Google Scholar 

  110. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258

    PubMed  CAS  Google Scholar 

  111. Perone MJ, Larregina AT, Shufesky WJ, Papworth GD, Sullivan ML, Zahorchak AF, Stolz DB, Baum LG, Watkins SC, Thomson AW, Morelli AE (2006) Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naïve and activated T cells. J Immunol 176:7207–7220

    PubMed  CAS  Google Scholar 

  112. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C (2002) TCR activation of human T cells induces the production of exosomes bearing TCR/CD3/zeta complex. J Immunol 168:3235–3241

    PubMed  CAS  Google Scholar 

  113. Bamias A, Tsiatas ML, Kafantari E, Liakou C, Rodolakis A, Voulgaris Z, Vlahos G, Papageorgiou T, Tsitsilonis O, Bamia C, Papatheodoridis G, Politi E, Archimandritis A, Antsaklis A, Dimopoulos MA (2007) Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3+ CD56+ cells with platinum resistance. Gynecol Oncol 106:75–81

    PubMed  CAS  Google Scholar 

  114. Kalinski P, Okada H (2010) Polarized dendritic cells as cancer vaccines: directing effector-type T cells to tumors. Semin Immunol 22(3):173–182

    PubMed  CAS  Google Scholar 

  115. Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, Camus M, Gillard M, Bruneval P, Fridman WH, Pagès F, Trajanoski Z, Galon J (2010) Biomolecular network reconstruction identifies T cell homing factors associated with colorectal cancer. Gastroenterology 138(4):1429–1440

    PubMed  CAS  Google Scholar 

  116. Lee CH, Chiang YH, Chang SE, Chong CL, Cheng BM, Roffler SR (2009) Tumor-localized ligation of CD3 and CD28 with systemic regulatory T-cell depletion induces potent innate and adaptive antitumor responses. Clin Cancer Res 15:2756–2766

    PubMed  CAS  Google Scholar 

  117. Maccalli C, Pisarra P, Vegetti C, Sensi M, Parmiani G, Anichini A (1999) Differential loss of T cell signaling molecules in metastatic melanoma patients' T lymphocyte subsets expressing distinct TCR variable regions. J Immunol 163:6912–6923

    PubMed  CAS  Google Scholar 

  118. Nieuwland R, van der Post JA, Gemma CA, Kenter G, Sturk A (2010) Microparticles and exosomes in gynecologic neoplasias. Semin Thromb Hemost 36:925–929

    PubMed  CAS  Google Scholar 

  119. Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, Lombardo D, Verine A (2008) Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 22:3358–3369

    PubMed  CAS  Google Scholar 

  120. Khazaie K, von Boehmer H (2006) The impact of CD4+ CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol 16:124–136

    PubMed  CAS  Google Scholar 

  121. Shen LS, Wang J, Shen DF, Yuan XL, Dong P, Li MX, Xue J, Zhang FM, Ge HL, Xu D (2009) CD4+CD25+CD127low/- regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol 131:109–118

    PubMed  CAS  Google Scholar 

  122. Wada J, Onishi H, Suzuki H, Yamasaki A, Nagai S, Morisaki T, Katano M (2010) Surface-bound TGF-beta1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T cells in malignant effusions. Anticancer Res 30:3747–3757

    PubMed  CAS  Google Scholar 

  123. Gardella S, Gardella S, Andrei C, Lotti LV, Poggi A, Torrisi MR, Zocchi MR, Rubartelli A (2001) CD8+ T lymphocytes induce polarized exocytosis of secretory lysosomes by dendritic cells with release of interleukin-1B and cathepsin D. Blood 98:2152–2159

    PubMed  CAS  Google Scholar 

  124. Xie Y, Bai O, Yuan J, Chibbar R, Slattery K, Wei Y, Deng Y, Xiang J (2009) Tumor apoptotic bodies inhibit CTL responses and antitumor immunity via membrane-bound transforming growth factor-beta-1 inducing CD8+ T-cell anergy and CD4+ Tr1 cell responses. Cancer Res 69:7756–7766

    PubMed  CAS  Google Scholar 

  125. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL (2010) Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 5:e11469

    PubMed  Google Scholar 

  126. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    PubMed  CAS  Google Scholar 

  127. Anderson HC, Mulhall D, Garimella R (2010) Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Invest 90:1549–1557

    PubMed  CAS  Google Scholar 

  128. Temme S, Eis-Hubinger AM, McLellan AD, Koch N (2010) The herpes simplex virus-1 encoded glycoprotein B diverts HLA-DR into the exosome pathway. J Immunol 184:236–243

    PubMed  CAS  Google Scholar 

  129. Miguet L, Béchade G, Fornecker L, Zink E, Felden C, Gervais C, Herbrecht R, Van Dorsselaer A, Mauvieux L, Sanglier-Cianferani S (2009) Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. J Proteome Res 8:3346–3354

    PubMed  CAS  Google Scholar 

  130. Taylor DD, Gercel-Taylor C, Jiang CG, Black PH (1988) Characterization of plasma membrane shedding from murine melanoma cells. Int J Cancer 41:629–635

    PubMed  CAS  Google Scholar 

  131. Taylor DD, Black PH (1985) Inhibition of macrophage Ia antigen expression by shed plasma membrane vesicles from metastatic murine melanoma lines. J Natl Cancer Inst 74:859–867

    PubMed  CAS  Google Scholar 

  132. Poutsiaka DD, Schroder EW, Taylor DD, Levy EM, Black PH (1985) Membrane vesicles shed by murine melanoma cells selectively inhibit the expression of Ia antigen by macrophages. J Immunol 134:138–144

    PubMed  CAS  Google Scholar 

  133. Pelton JJ, Taylor DD, Fowler WC, Gercel-Taylor C, Carp NZ, Weese JL (1991) Lymphokine-activated killer cell suppressor factor in malignant effusions. Arch Surg 126:476–480

    PubMed  CAS  Google Scholar 

  134. Albanese J, Meterissian S, Kontogiannea M, Dubreuil C, Hand A, Sorba S, Dainiak N (1998) Biologically acive Fas antigen and its cognate ligand are expressed on plasma membrane-derived extracellular vesicles. Blood 91:3862–3874

    PubMed  CAS  Google Scholar 

  135. Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179:1969–1978

    PubMed  CAS  Google Scholar 

  136. Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD (2007) MHC class II + exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent manner. J Immunol 179(4):2235–2241

    PubMed  CAS  Google Scholar 

  137. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    PubMed  CAS  Google Scholar 

  138. Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194:1123–1140

    PubMed  CAS  Google Scholar 

  139. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    PubMed  CAS  Google Scholar 

  140. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    PubMed  CAS  Google Scholar 

  141. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    PubMed  CAS  Google Scholar 

  142. Scotton CJ, Martinez FO, Smelt MJ, Sironi M, Locati M, Mantovani A, Sozzani S (2005) Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174:834–845

    PubMed  CAS  Google Scholar 

  143. Roman J, Ritzenthaler JD, Fenton MJ, Roser S, Schuyler W (2000) Transcriptional regulation of the human interleukin 1beta gene by fibronectin: role of protein kinase C and activator protein 1 (AP-1). Cytokine 12:1581–1589

    PubMed  CAS  Google Scholar 

  144. Roman J, McDonald JA (1997) Fibronectins and fibronectin receptors in lung development, injury and repair. In: Crystal RG, West JB, Barnes P, Weibel ER (eds) The lung: scientific foundations, 2nd edn. Raven, New York, pp 737–755

    Google Scholar 

  145. Graves K, Roman J (1996) Fibronectin modulates the expression of interleukin-1β and its receptor antagonist in human mononuclear cells. Am J Physiol 271:L61–L69

    PubMed  CAS  Google Scholar 

  146. Pacifici R, Roman J, Kimble R, Civitelli R, Brownfield CM, Bizzarri C (1994) Ligand binding to monocyte alpha 5 beta 1 integrin activates the alpha 2 beta 1 receptor via the alpha 5 subunit cytoplasmic domain and protein kinase C. J Immunol 153:2222–2233

    PubMed  CAS  Google Scholar 

  147. Takizawa T, Nishinarita S, Kitamura N, Hayakawa J, Kang H, Tomita Y, Mitamura K, Yamagami K, Horie T (1995) Interaction of the cell-binding domain of fibronectin with VLA-5 integrin induces monokine production in cultured human monocytes. Clin Exp Immunol 101:376–382

    PubMed  CAS  Google Scholar 

  148. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Ann Rev Cell Dev Biol 12:697–715

    CAS  Google Scholar 

  149. Ardoin SP, Shanahan JC, Pisetsky DS (2007) The role of microparticles in inflammation and thrombosis. Scan J Immunol 66:159–165

    CAS  Google Scholar 

  150. Distler JH, Distler O (2010) Inflammation: microparticles and their roles in inflammatory arthritides. Nat Rev Rheumatol 6(7):385–386

    PubMed  Google Scholar 

  151. Eken C, Gasser O, Zenhaeusern G, Oehri I, Hess C, Schifferli JA (2008) Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 180:817–824

    PubMed  CAS  Google Scholar 

  152. Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104:2543–2548

    PubMed  CAS  Google Scholar 

  153. Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, Plachý J, Stangassinger M, Erfle V, Schlöndorff D (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6:769–775

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas D. Taylor.

Additional information

This article is published as part of the Special Issue on Small Vesicles as Immune Modulators.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, D.D., Gercel-Taylor, C. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33, 441–454 (2011). https://doi.org/10.1007/s00281-010-0234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0234-8

Keywords

Navigation