Skip to main content

Advertisement

Log in

Inhibition of hepatocellular carcinoma growth and angiogenesis by dual silencing of NET-1 and VEGF

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Simultaneous silencing of multiple up-regulated genes is an attractive and viable strategy to treat many incurable diseases including cancer. Herein we used dual gene targeted siRNA (DGT siRNA) conjugate composed of NET-1 and VEGF siRNA sequences in the same backbone could inhibit growth and angiogenesis HCC. DGT siRNA showed a further down regulation on VEGF mRNA and protein levels compared with NET-1 siRNA or VEGF siRNA, but not on NET-1 expression. It also exhibited greater suppression on proliferation and trigger of apoptosis in HepG2 cells than NET-1 siRNA or VEGF siRNA; this could be explained by the significant down regulation of cyclin D1 and Bcl-2. A lower level of ANG2 mRNA and protein was detected in HUVEC cultured with supernatant of HepG2 cells treated with DGT siRNA than that of VEGF siRNA or NET-1 siRNA, resulting in much more inhibited angiogenesis of HUVEC. Tumor growth was inhibited and microvessel density dropped in the xenograft tumor models compared to the untreated controls. NET-1 and VEGF silencing play a key role in inhibiting hepatocellular cell proliferation, promoting apoptosis, and reducing angiogenesis. Simultaneous silencing of NET-1 and VEGF using DGT siRNA construct may provide an advantageous alternative in development of therapeutics for Hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Carroll VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66:6264–6270

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wang Z, Zhan X, Li DC, Zhu YY, Zhu J (2007) Association of NET-1 gene expression with human hepatocellular carcinoma. Int J Surg Pathol 15:346–353

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Li X, Wang GL, Wang Y, Zhu YY, Zhu J (2008) Clinicopathological significance of overexpression of TSPAN1, Ki67 and CD34 in gastric carcinoma. Tumori 94:531–538

    PubMed  Google Scholar 

  • Chen L, Zhu YY, Zhang XJ, Wang GL, Li XY, He S, Zhang JB, Zhu JW (2009) TSPAN1 protein expression: a significant prognostic indicator for patients with colorectal adenocarcinoma. World J Gastroenterol 15:2270–2276

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yuan D, Wang GL, Wang Y, Wu YY, Zhu J (2010a) Clinicopathological significance of expression of Tspan-1, Jab1 and p27 in human hepatocellular carcinoma. J Korean Med Sci 25:1438–1442

    Article  PubMed  Google Scholar 

  • Chen L, Yuan D, Zhao R, Li H, Zhu J (2010b) Suppression of TSPAN1 by RNA interference inhibits proliferation and invasion of colon cancer cells in vitro. Tumori 96:744–750

    PubMed  CAS  Google Scholar 

  • Chen L, Zhu Y, Li H, Wang GL, Wu YY, Lu YX, Qin J, Tuo J, Wang JL, Zhu J (2010c) Knockdown of TSPAN1 by RNA silencing and antisense technique inhibits proliferation and infiltration of human skin squamous carcinoma cells. Tumori 96:289–295

    PubMed  CAS  Google Scholar 

  • Cheng K, Mahato RI (2007) Gene modulation for treating liver fibrosis. Crit Rev Ther Drug Carrier Syst 24:93–146

    Article  PubMed  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  • Deane NG, Parker MA, Aramandla R, Diehl L, Lee WJ, Washington MK, Nanney LB, Shyr Y, Beauchamp RD (2001) Hepatocellular carcinoma results from chronic cyclin D1 overexpression in transgenic mice. Cancer Res 61:5389–5395

    PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hashizume H, Falcon B, Kuroda T, Baluk P, Coxon A, Yu D, Bready J, Oliner J, McDonald D (2010) Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res 70:2213–2223

    Article  PubMed  CAS  Google Scholar 

  • Hongo T, Kajikawa M, Ishida S, Ozawa S, Ohno Y, Sawada J, Ishikawa Y, Honda H (2006) Gene expression property of high-density three-dimensional tissue of HepG2 cells formed in radial-flow bioreactor. J Biosci Bioeng 101:243–250

    Article  PubMed  CAS  Google Scholar 

  • Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8:529–532

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Mok H, Jo S, Hong CA, Park TG (2011) Dual gene targeted multimeric siRNA for combinatorial gene silencing. Biomaterials 32:2359–2368

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Poon R, Li Q, Kok T, Lau C, Fan S (2005) Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 65:3691–3699

    Article  PubMed  CAS  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    PubMed  CAS  Google Scholar 

  • Mahato RI, Cheng K, Guntaka RV (2005) Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2:3–28

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Büttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18:363–374

    Article  PubMed  CAS  Google Scholar 

  • Ng IO, Poon RT, Lee JM, Fan ST, Ng M, Tso WK (2001) Microvessel density, vascular endothelial growth factor and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma. Am J Clin Pathol 116:838–845

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Yamamoto H, Tamiya S, Matsuda S, Tanaka K, Yokoyama R, Iwamoto Y, Tsuneyoshi M (2006) CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol 19:738–745

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739

    Article  PubMed  CAS  Google Scholar 

  • Pang R, Poon RT (2006) Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett 242:151–167

    Article  PubMed  CAS  Google Scholar 

  • Qiu MB, Zhang JX, Liu LM, Gong BD, Wu BL, Zhu SS, Wen Y (2004) Inhibitory effects of antisense oligodeoxynucleotide on expression of vascular endothelia growth factor by human hepatocarcinoma cells. Hepatobiliary Pancreat Dis Int 3:552–557

    PubMed  CAS  Google Scholar 

  • Raskopf E, Vogt A, Sauerbruch T, Schmitz V (2008) siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis in vivo. J Hepatol 49:977–984

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17:2941–2953

    PubMed  CAS  Google Scholar 

  • Scholz CJ, Kurzeder C, Koretz K, Windisch J, Kreienberg R, Sauer G, Deissler H (2009) Tspan-1 is a tetraspanin preferentially expressed by mucinous and endometrioid subtypes of human ovarian carcinomas. Cancer Lett 275:198–203

    Article  PubMed  CAS  Google Scholar 

  • Serru V, Dessen P, Boucheix C, Rubinstein E (2000) Sequence and expression of seven new tetraspans. Biochim Biophys Acta 1478:159–163

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1993) Mammalian G1 cyclins. Cell 73:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Siegel AB, Cohen EI, Ocean A, Lehrer D, Goldenberg A, Knox JJ, Chen H, Clark-Garvey S, Weinberg A, Mandeli J, Christos P, Mazumdar M, Popa E, Brown RS, Rafii S, Schwartz JD (2008) Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 26:2992–2998

    Article  PubMed  CAS  Google Scholar 

  • Thomas MB, Morris JS, Chadha R, Iwasaki M, Kaur H, Lin E, Kaseb A, Glover K, Davila M, Abbruzzese J (2009) Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 27:843–850

    Article  PubMed  CAS  Google Scholar 

  • Wollscheid V, Kühne-Heid R, Stein I, Jansen L, Köllner S, Schneider A, Dürst M (2002) Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-grade cervical intraepithelial neoplasia and cervical carcinomas. Int J Cancer 99:771–775

    Article  PubMed  CAS  Google Scholar 

  • Yauch RL, Hemler ME (2000) Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase. Biochem J 351(Pt 3):629–637

    Article  PubMed  CAS  Google Scholar 

  • Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ, Yun CO (2007) VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther 15:295–302

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Sanyal S, Mukhopadhyay D (2001) Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J Biol Chem 276:32714–32719

    Article  PubMed  CAS  Google Scholar 

  • Zhu AX, Blaszkowsky LS, Ryan DP, Clark JW, Muzikansky A, Horgan K, Sheehan S, Hale KE, Enzinger PC, Bhargava P, Stuart K (2006) Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:1898–1903

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by fundings: from the Advanced Academic Program Development of Jiangsu Higher Education Institutions, Foundation of the Ministry of Health, Jangsu provience, China (No.H201052), the Science Foundation of Nantong City, Jiangsu province, China (No.K2009060), and Foundation of medical school, Nantong university, Jangsu province, China (No.YXY-200908), respectively. We thank Biomics Biotechnologies Co., Ltd. (Nantong, Jiangsu, China) for kindly providing synthesis of siRNAs and shRNAs.

Conflict of interest

All the authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chen.

Additional information

Li Chen: Joint first author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YY., Chen, L., Wang, GL. et al. Inhibition of hepatocellular carcinoma growth and angiogenesis by dual silencing of NET-1 and VEGF. J Mol Hist 44, 433–445 (2013). https://doi.org/10.1007/s10735-012-9480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9480-5

Keywords

Navigation