Skip to main content

Mutation and Mutation Screening

  • Protocol
  • First Online:
Cereal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1099))

Abstract

Molecular techniques have created the opportunity for great advances in plant mutation genetics and the science of mutation breeding. The powerful targeted induced local lesions in genomes (TILLING) technique has introduced the possibility of reverse genetics—the ability to screen for mutations at the DNA level prior to assessing phenotype. Fundamental to TILLING is the induction of mutant populations (or alternatively, the identification of mutants in the environment); and mutation induction requires an understanding and assessment of the appropriate mutagen dose required. The techniques of mutation induction, dose optimization, and TILLING are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  PubMed  CAS  Google Scholar 

  2. Stadler LJ (1928) Mutations in barley induced by x-rays and radium. Science 68:186–187

    Article  PubMed  CAS  Google Scholar 

  3. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  4. Wang ZY, Zheng F, Shen G et al (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  PubMed  CAS  Google Scholar 

  5. Bradbury LMT, Fitzgerald TL, Henry RJ et al (2005) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    Article  PubMed  CAS  Google Scholar 

  6. Juwattanasomran R, Somta P, Chankaew S et al (2011) A SNP in GmBADH2gene associates with fragrance in vegetable soybean variety "Kaori" and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541

    Article  PubMed  CAS  Google Scholar 

  7. Monna L, Kitazawa N, Yoshino R et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice "Green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  PubMed  CAS  Google Scholar 

  8. Konishi S, Izawa T, Lin SY et al (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  PubMed  CAS  Google Scholar 

  9. van Harten AM (1998) Mutation Breeding: theory and practical applications. Cambridge University Press, Cambridge, p 113ff

    Google Scholar 

  10. McCallum CM, Comai L, Greene EA et al (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  PubMed  CAS  Google Scholar 

  11. Wienholds E, van Eeden F, Kosters M et al (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707

    Article  PubMed  CAS  Google Scholar 

  12. Greene E, Codomo C, Taylor N et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genet 164:731–740

    CAS  Google Scholar 

  13. Li X, Song Y, Century K et al (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242

    Article  PubMed  CAS  Google Scholar 

  14. Bruggemann E, Handwerger K, Essex C et al (1996) Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 10:755–760

    Article  PubMed  CAS  Google Scholar 

  15. Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two arabidopsis transparent testa mutations. Plant Cell 4:333–347

    Google Scholar 

  16. Shikazono N, Suzuki C, Watanabe H et al (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56:587–596

    Google Scholar 

  17. Kazama Y, Hirano T, Saito H et al (2011) Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol 11:161–170

    Google Scholar 

  18. Naito K, Kusaba M, Shikazono N et al (2005) Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with gamma rays and carbon ions. Genet 169:881–889

    Google Scholar 

  19. Sato Y, Shirasawa K, Takahashi Y et al (2006) Mutant selection from progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using brassica petiole extract. Breed Sci 56:179–183

    Article  CAS  Google Scholar 

  20. Harding SS, Mohamad O (2009) Radiosensitivity test on two varieties of Terengganu and Arab used in mutation breeding of roselle (Hibiscus sabdariffa L.). Afr J Plant Sci 3:181–183

    Google Scholar 

  21. Plewa MJ, Dowd PA, Wagner ED (1984) Calibration of the maize yg2 assay using gamma radiation and ethylmethanesulfonate. Environ Mutagen 6:781–795

    Article  PubMed  CAS  Google Scholar 

  22. Sarduie-Nasab S, Sharifi-Sirchi GR, Torabi-Sirchi MH (2010) Assessment of dissimilar gamma irradiations on barley (Hordeum vulgare spp.). J Plant Breed Crop Sci 2:59–63

    CAS  Google Scholar 

  23. Lundqvist U (1992) Mutation Research in Barley. PhD Thesis. Swedish University of Agricultural Sciences, Svalov

    Google Scholar 

  24. Koornneeff M, Dellaert LWM, van der Veen JH (1982) EMS- and relation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123

    Article  Google Scholar 

  25. Lee LS, Izquierdo L, Rice N et al (2004) Modifying sorghum starch/protein structure for human consumption. 54th Cereal Chemistry Division Conference of the Royal Australian Chemical Institute. Canberra, pp 308–310

    Google Scholar 

  26. Schy WE, Plewa MJ (1989) Molecular dosimetry studies of forward mutation induced at the yg2 locus in maize by ethyl methanesulfonate. Mutat Res 211:231–241

    Article  PubMed  CAS  Google Scholar 

  27. van Zeeland AA (1996) Molecular dosimetry of chemical mutagens. Relationship between DNA adduct formation and genetic changes analyzed at the molecular level. Mutat Res 353:123–150

    Article  PubMed  Google Scholar 

  28. Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401

    Article  PubMed  CAS  Google Scholar 

  29. Laurie DA, Pratchett N, Allen RL et al (1996) RFLP mapping of the barley homeotic mutant lax-a. Theor Appl Genet 93:81–85

    Article  PubMed  CAS  Google Scholar 

  30. Voylokov AV, Korzun V, Borner A (1998) Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theor Appl Genet 97:147–153

    Article  CAS  Google Scholar 

  31. Williams KJ, Fisher JM, Langridge P (1996) Development of a PCR-based allele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome 39:798–801

    Article  PubMed  CAS  Google Scholar 

  32. Godwin ID, Sangduen N, Kunanuvatchaidach R et al (1997) RAPD polymorphisms among variant and phenotypically normal rice (Oryza sativa var indica) somaclonal progenies. Plant Cell Rep 16:320–324

    CAS  Google Scholar 

  33. Osipova ES, Koveza OV, Troitskij AV et al (2003) Analysis of specific RAPD and ISSR fragments in maize (Zea mays L.) somaclones and development of SCAR markers on their basis. Russ J Genet 39:1412–1419

    Article  CAS  Google Scholar 

  34. Suo GL, Huang ZJ, He CF et al (2001) Identification of the molecular markers linked to the salt-resistance locus in the wheat using RAPD-BSA technique. Acta Botanica Sinica 43:598–602

    CAS  Google Scholar 

  35. Fu H-W, Li Y-F, Shu Q-Y (2008) A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol Breed 22:281–288

    Article  CAS  Google Scholar 

  36. Lu JY, Zhang WL, Xue H et al (2010) Changes in AFLP and SSR DNA polymorphisms induced by short-term space flight of rice seeds. Biol Plantarum 54:112–116

    Article  CAS  Google Scholar 

  37. Salina E, Borner A, Leonova I et al (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689

    Article  CAS  Google Scholar 

  38. Schmidt AL, Mitter V (2004) Microsatellite mutation directed by an external stimulus. Mutat Res 568:233–243

    Article  PubMed  CAS  Google Scholar 

  39. Castiglioni P, Pozzi C, Heun M et al (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genet 149:2039–2056

    CAS  Google Scholar 

  40. Komatsuda T, Maxim P, Senthil N et al (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995

    Article  PubMed  CAS  Google Scholar 

  41. Pasini L, Stile MR, Puja E et al (2008) The integration of mutant loci affecting maize endosperm development in a dense genetic map using an AFLP-based procedure. Mol Breed 22:527–541

    Article  CAS  Google Scholar 

  42. Rashid M, Liu R-H, Jin W et al (2009) Genomic diversity among Basmati rice (Oryza sativa L) mutants obtained through Co-60 gamma radiations using AFLP markers. Afr J Biotechnol 8:6777–6783

    CAS  Google Scholar 

  43. Wienholds E, Schulte-Merker S, Walderich B et al (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102

    Article  PubMed  CAS  Google Scholar 

  44. Oleykowski CA, Mullins CRB, Godwin AK et al (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  PubMed  CAS  Google Scholar 

  45. McCallum CM, Comai L, Greene EA et al (2000) Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  46. Caldwell D, McCallum N, Shaw P et al (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  47. Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115

    Article  PubMed  CAS  Google Scholar 

  48. Till B, Reynolds S, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:1471–2229

    Article  Google Scholar 

  49. Xin Z, Li Wang M, Barkley N et al (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi:10.1186/1471-2229-8-103

    Article  PubMed  Google Scholar 

  50. Cordeiro G, Eliott FG, Henry RJ (2006) An optimized ecotilling protocol for polyploids or pooled samples using a capillary electrophoresis system. Anal Biochem 355:145–147

    Article  PubMed  CAS  Google Scholar 

  51. Domon E, Saito A, Takeda K (2002) Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst 77:351–359

    Article  PubMed  CAS  Google Scholar 

  52. Szantai E, Ronai Z, Szilagyi A et al (2005) Haplotyping by capillary electrophoresis. J Chromatogr A 1079:41–49

    Article  PubMed  CAS  Google Scholar 

  53. Tsai H, Howell T, Nitcher R et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268. doi:10.1104/pp. 110.169748

    Article  PubMed  CAS  Google Scholar 

  54. Till BJ, Zerr T, Comai L et al (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477. doi:10.1038/nprot.2006.329

    Article  PubMed  CAS  Google Scholar 

  55. Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530. doi:10.1101/gr.977903

    Article  PubMed  CAS  Google Scholar 

  56. Jankowicz-Cieslak J, Huynh OA, Bado S et al (2011) Reverse-genetics by TILLING expands through the plant kingdom. Emir J Food Agric 23:290–300

    Google Scholar 

  57. Till BJ, Burtner C, Comai L et al (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641, 32/8/2632 [pii]10.1093/nar/gkh599

    Article  PubMed  CAS  Google Scholar 

  58. Triques K, Piednoir E, Dalmais M et al (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 9:42. doi:10.1186/1471-2199-9-42

    Article  PubMed  Google Scholar 

  59. Stephenson P, Baker D, Girin T et al (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62. doi:10.1186/1471-2229-10-62

    Article  PubMed  Google Scholar 

  60. Ramos ML, Huntley JJ, Maleki SJ et al (2009) Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. Plant Mol Biol 69:325–335. doi:10.1007/s11103-008-9428-z

    Article  PubMed  CAS  Google Scholar 

  61. Slade AJ, Fuerstenberg SI, Loeffler D et al (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81. doi:10.1038/nbt1043

    Article  PubMed  CAS  Google Scholar 

  62. Blomstedt CK, Gleadow RM, O'Donnell N et al (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66. doi:10.1111/j.1467-7652.2011.00646.x

    Article  PubMed  Google Scholar 

  63. Till BJ, Reynolds SH, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12. doi:10.1186/1471-2229-4-12

    Article  PubMed  Google Scholar 

  64. Cooper JL, Till BJ, Laport RG et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9. doi:10.1186/1471-2229-8-9

    Article  PubMed  Google Scholar 

  65. Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. doi:10.1186/1471-2229-7-19

    Article  PubMed  Google Scholar 

  66. Marroni F, Pinosio S, Di Centa E et al (2011) Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: towards next-generation Ecotilling. Plant J 67:736–745. doi:10.1111/j.1365-313X.2011.04627.x

    Article  PubMed  CAS  Google Scholar 

  67. Till BJ, Zerr T, Bowers E et al (2006) High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling. Nucleic Acids Res 34:e99, 34/13/e99 [pii]10.1093/nar/gkl479

    Article  PubMed  Google Scholar 

  68. Till BJ, Jankowicz-Cieslak J, Sagi L et al (2010) Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theor Appl Genet 121:1381–1389. doi:10.1007/s00122-010-1395-5

    Article  PubMed  CAS  Google Scholar 

  69. Botticella E, Sestili F, Hernandez-Lopez A et al (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SBEIIa genes. BMC Plant Biol 11:156. doi:10.1186/1471-2229-11-156

    Article  PubMed  CAS  Google Scholar 

  70. Vriet C, Welham T, Brachmann A et al (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655. doi:10.1104/pp. 110.161844

    Article  PubMed  CAS  Google Scholar 

  71. Cross MJ, Waters DL, Lee LS et al (2008) Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 29:1291–1301. doi:10.1002/elps.200700452

    Article  PubMed  CAS  Google Scholar 

  72. Wang TL, Uauy C, Robson F et al (2012) TILLING in extremis. Plant Biotechnol J 10:761–772. doi:10.1111/j.1467-7652.2012.00708.x

    Article  PubMed  CAS  Google Scholar 

  73. Zerr T, Henikoff S (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res 33(9):2806–2812, 33/9/2806 [pii]10.1093/nar/gki580

    Article  PubMed  CAS  Google Scholar 

  74. Abramoff MD, Magalhael PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11:36–42

    Google Scholar 

Download references

Acknowledgments

Authors B.J.T., O.A.H., and J.J-C. wish to thank Kamila Kozak-Stankiewicz for supplying lupine samples used for making Fig. 2c. Funding for the work on low-cost TILLING and EcoTILLING was provided by the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency through their Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, L.S., Till, B.J., Hill, H., Huynh, O.A., Jankowicz-Cieslak, J. (2014). Mutation and Mutation Screening. In: Henry, R., Furtado, A. (eds) Cereal Genomics. Methods in Molecular Biology, vol 1099. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-715-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-715-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-714-3

  • Online ISBN: 978-1-62703-715-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics