Skip to main content
Log in

Identification and characterization of a hypoallergenic ortholog of Ara h 2.01

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Peanut (Arachis hypogaea L.), can elicit type I allergy becoming the most common cause of fatal food-induced anaphylactic reactions. Strict avoidance is the only effective means of dealing with this allergy. Ara h 2, a peanut seed storage protein, has been identified as the most potent peanut allergen and is recognized by approximately 90% of peanut hypersensitive individuals in the US. Because peanut has limited genetic variation, wild relatives are a good source of genetic diversity. After screening 30 Arachis duranensis accessions by EcoTILLing, we characterized five different missense mutations in ara d 2.01. None of these polymorphisms induced major conformational modifications. Nevertheless, a polymorphism in the immunodominant epitope #7 (S73T) showed a 56–99% reduction in IgE-binding activity and did not affect T cell epitopes, which must be retained for effective immunotherapy. The identification of natural hypoallergenic isoforms positively contributes to future immunological and therapeutic studies and peanut cultivar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bannon GA, Cockrell G, Connaughton C, West CM, Helm R, Stanley JS, King N, Rabjohn P, Sampson HA, Burks AW (2001) Engineering, characterization and in vitro efficacy of the major peanut allergens for use in immunotherapy. Int Arch Allergy Immunol 124:70–72. doi:10.1159/000053672

    Article  CAS  PubMed  Google Scholar 

  • Barre A, Borges J-P, Culerrier R, Rouge P (2005) Homology modelling of the major peanut allergen Ara h 2 and surface mapping of IgE-binding epitopes. Immunol Lett 100:153–158. doi:10.1016/j.imlet.2005.03.014

    Article  CAS  PubMed  Google Scholar 

  • Bock SA, Munoz-Furlong A, Sampson HA (2001) Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 107:191–193. doi:10.1067/mai.2001.112031

    Article  CAS  PubMed  Google Scholar 

  • Burks AW, Williams LW, Connaughton C, Cockrell G, O’Brien TJ, Helm RM (1992) Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 90:962–969. doi:10.1016/0091-6749(92)90469-I

    Article  CAS  PubMed  Google Scholar 

  • Burks W, Sampson H, Bannon G (1998) Peanut allergens. Allergy 53:725–730

    CAS  PubMed  Google Scholar 

  • Burks AW, King N, Bannon GA (1999) Modification of a major peanut allergen leads to loss of IgE binding. Int Arch Allergy Immunol 118:313–314. doi:10.1159/000024114

    Article  CAS  PubMed  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Shafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8. University of California, San Francisco

    Google Scholar 

  • Chatel J-M, Bernard H, Orson FM (2003) Isolation and characterization of two complete Ara h 2 isoforms cDNA. Int Arch Allergy Immunol 131:14–18. doi:10.1159/000070429

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Faustinelli P, Ramos ML, Hajduch M, Stevenson S, Thelen JJ, Maleki SJ, Ozias-Akins P (2008) Reduction of IgE binding and non-promotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. J Agric Food Chem. http://dx.doi.org/10.1021/jf802600r

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786. doi:10.1111/j.0960-7412.2003.01999.x

    Article  CAS  PubMed  Google Scholar 

  • de Leon MP, Rolland JM, O’Hehir RE (2007) The peanut allergy epidemic: allergen molecular characterisation and prospects for specific therapy. Expert Rev Mol Med 9:1–18. doi:10.1017/S1462399407000208

    PubMed  Google Scholar 

  • Dodo H, Konan K, Viquez O (2005) A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep 5:67–73. doi:10.1007/s11882-005-0058-0

    Article  CAS  PubMed  Google Scholar 

  • Drew AC, Eusebius NP, Kenins L, de Silva HD, Suphioglu C, Rolland JM, O’Hehir RE (2004) Hypoallergenic variants of the major latex allergen Hev b 6.01 retaining human T lymphocyte reactivity. J Immunol 173:5872–5879

    CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012. doi:10.1002/jcc.10349

    Article  CAS  PubMed  Google Scholar 

  • Gilissen LJWJ, Bolhaar STHP, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, Zuidmeer L, van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg WE, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369. doi:10.1016/j.jaci.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  • Glaspole IN, de Leon MP, Rolland JM, O’Hehir RE (2005) Characterization of the T-cell epitopes of a major peanut allergen, Ara h 2. Allergy 60:35–40. doi:10.1111/j.1398-9995.2004.00608.x

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401. doi:10.1146/annurev.arplant.54.031902.135009

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43. doi:10.1104/pp.103.021865

    Article  CAS  PubMed  Google Scholar 

  • Jose-Estanyol M, Gomis-Ruth FX, Puigdomenech P (2004) The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42:355–365. doi:10.1016/j.plaphy.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  • Joseph LM, Hymowitz T, Schmidt MA, Herman EM (2006) Evaluation of glycine germplasm for nulls of the immunodominant allergen P34/Gly m Bd 30 k. Crop Sci 46:1755–1763. doi:10.2135/cropsci2005.12-0500

    Article  CAS  Google Scholar 

  • King N, Ricki HJ, Steven S, Stefan V, Dirk L, Lina H, Hugh S, Laurent P, Wesley B, Gary AB (2005) Allergenic characteristics of a modified peanut allergen. Mol Nutr Food Res 49:963–971. doi:10.1002/mnfr.200500073

    Article  CAS  PubMed  Google Scholar 

  • Koppelman SJ, Vlooswijk RAA, Knippels LMJ, Hessing M, Knol EF, van Reijsen FC, Bruijnzeel-Koomen CAFM (2001) Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy 56:132–137. doi:10.1034/j.1398-9995.2001.056002132.x

    Article  CAS  PubMed  Google Scholar 

  • Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF (2004) Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy 34:583–590. doi:10.1111/j.1365-2222.2004.1923.x

    Article  CAS  PubMed  Google Scholar 

  • Laskowski R, Rullmannn J, MacArthur M, Kaptein R, Thornton J (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486. doi:10.1007/BF00228148

    Article  CAS  PubMed  Google Scholar 

  • Lehmann K, Schweimer K, Reese G, Randow S, Suhr M, Becker W-M, Vieths S, Rasch P (2006) Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J 395:463–472. doi:10.1042/BJ20051728

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi:10.1093/nar/30.1.325

    Article  CAS  PubMed  Google Scholar 

  • Lewis SA, Grimshaw KEC, Warner JO, Hourihane JOB (2005) The promiscuity of immunoglobulin E binding to peanut allergens, as determined by Western blotting, correlates with the severity of clinical symptoms. Clin Exp Allergy 35:767–773. doi:10.1111/j.1365-2222.2005.02252.x

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442. doi:10.1104/pp.123.2.439

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80. doi:10.1146/annurev.genom.7.080505.115630

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Ramos ML, Chu Y (2006) Hypoallergenic foods beyond infant formulas. In: Maleki SJ, Burks AW, Helm RM (eds) Food allergy: comprehension, treatment and prevention. ASM Press, Herndon, VA

  • Peitsch MC (1995) Protein modeling by e-mail. Nat Biotechnol 13:658–660. doi:10.1038/nbt0795-658

    Article  CAS  Google Scholar 

  • Pham T, Rudner E (2000) Peanut allergy. Cutis 65:285–289

    CAS  PubMed  Google Scholar 

  • Rabjohn P, West CM, Connaughton C, Sampson HA, Helm RM, Burks AW, Bannon GA (2002) Modification of peanut allergen Ara h 3: effects on IgE binding and T cell stimulation. Int Arch Allergy Immunol 128:15–23. doi:10.1159/000057999

    Article  CAS  PubMed  Google Scholar 

  • Ramos M, Fleming G, Chu Y, Akiyama Y, Gallo M, Ozias-Akins P (2006) Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Gen Genet 275:578–592

    CAS  Google Scholar 

  • Rolland JM, Douglass J, O’Hehir RE (2000) Allergen immunotherapy: current and new therapeutic strategies. Expert Opin Investig Drugs 9:515–527. doi:10.1517/13543784.9.3.515

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fristch E, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sampson HA (2004) Update on food allergy. J Allergy Clin Immunol 113:805–819. doi:10.1016/j.jaci.2004.03.014

    Article  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi:10.1093/nar/gkg520

    Article  CAS  PubMed  Google Scholar 

  • Sen M, Kopper R, Pons L, Abraham EC, Burks AW, Bannon GA (2002) Protein structure plays a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes. J Immunol 169:882–887

    CAS  PubMed  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    Article  CAS  PubMed  Google Scholar 

  • Shin DS, Compadre CM, Maleki SJ, Kopper RA, Sampson H, Huang SK, Burks AW, Bannon GA (1998) Biochemical and structural analysis of the IgE binding sites on Ara h1, an abundant and highly allergenic peanut protein. J Biol Chem 273:13753–13759. doi:10.1074/jbc.273.22.13753

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81. doi:10.1038/nbt1043

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Chapman MD (1996) Reduction in IgE binding to allergen variants generated by site-directed mutagenesis: contribution of disulfide bonds to the antigenic structure of the major house dust mite allergen Der p 2. Mol Immunol 33:399–405. doi:10.1016/0161-5890(95)00150-6

    Article  CAS  PubMed  Google Scholar 

  • Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, Helm RM, West CM, Bannon GA (1997) Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 342:244–253. doi:10.1006/abbi.1997.9998

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477. doi:10.1038/nprot.2006.329

    Article  CAS  PubMed  Google Scholar 

  • Viquez OM, Summer CG, Dodo HW (2001) Isolation and molecular characterization of the first genomic clone of a major peanut allergen, Ara h 2. J Allergy Clin Immunol 107:713–717. doi:10.1067/mai.2001.113522

    Article  CAS  PubMed  Google Scholar 

  • Zerr T, Henikoff S (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res 33:2806–2812. doi:10.1093/nar/gki580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consortium for Plant Biotechnology Research, The Georgia Peanut Commission, and the Peanut Foundation. We thank Evelyn Morgan, Anne Bell, Hsiaopo Cheng, Ye Chu, and Paola Faustinelli for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Ozias-Akins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, M.L., Huntley, J.J., Maleki, S.J. et al. Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. Plant Mol Biol 69, 325–335 (2009). https://doi.org/10.1007/s11103-008-9428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9428-z

Keywords

Navigation