Skip to main content

Analysis of Volatile Mouse Pheromones by Gas Chromatography Mass Spectrometry

  • Protocol
  • First Online:
Pheromone Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1068))

Abstract

High-precision quantitative profiling of volatile organic constituents in rodent physiological fluids and glandular secretions is needed to relate olfactory signals to physiology and behavior. Whereas capillary gas chromatography-mass spectrometry (GC-MS) analysis has become the most widely applied in such investigations, the extraction and preconcentration of volatile organics is arguably the most critical step in the overall analytical task. In this chapter, we describe technical details of two main sample extraction procedures used in our laboratory: dynamic headspace trapping, and stir bar sorptive extraction (SBSE). They have been demonstrated here for the chromatographic analysis of mouse urine, serum, saliva, and preputial gland specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karlson P, Lüscher M (1959) “Pheromones”: a new term for a class of biologically active substances. Nature 183:55–56

    Article  PubMed  CAS  Google Scholar 

  2. Lee S, van der Boot LM (1955) Spontaneous pseudopregnancy in mice. Acta Physiol Pharmacol Neerl 4:442–443

    Google Scholar 

  3. Lee S, van der Boot LM (1956) Spontaneous pseudopregnancy in mice II. Acta Physiol Pharmacol Neerl 5:213–214

    Google Scholar 

  4. Whitten WK (1956) Modification of the oestrus cycle of the mouse by external stimuli associated with the male. J Endocrinol 13:399–404

    Article  PubMed  CAS  Google Scholar 

  5. Whitten WK, Bronson FH, Greenstein JA (1968) Estrus-inducing pheromone of male mice: transport by movement of air. Science 161:584–585

    Article  PubMed  CAS  Google Scholar 

  6. Jemiolo B, Harvey S, Novotny M (1986) Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents. Proc Natl Acad Sci USA 83:4576–4579

    Article  PubMed  CAS  Google Scholar 

  7. Novotny M, Jemiolo B, Harvey S, Wiesler D, Marchlewska-Koj A (1986) Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231:722–725

    Article  PubMed  CAS  Google Scholar 

  8. Novotny M, Harvey S, Novotny M (1990) Chemistry of male dominance in the house mouse, Mus domesticus. Experientia 46:109–113

    Article  PubMed  CAS  Google Scholar 

  9. Buck LB, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  10. Moss RL, Flynn RE, Shen X-M, Dudley C, Shi J, Novotny M (1997) Urine-derived compound evokes membrane responses in mouse vomeronasal receptor neurons. J Neurophysiol 77:2856–2862

    PubMed  CAS  Google Scholar 

  11. Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796

    Article  PubMed  CAS  Google Scholar 

  12. Holy TE, Dulac C, Meister M (2000) Responses of vomeronasal neurons to natural stimuli. Science 289:1569–1572

    Article  PubMed  CAS  Google Scholar 

  13. Sam M, Vora S, Malnic B, Ma W, Novotny MV, Buck LB (2001) Odorants may arouse instinctive behaviours. Nature 412:142

    Article  PubMed  CAS  Google Scholar 

  14. Boehm U, Zou Z, Buck LB (2005) Feedback loops link odor and pheromone signaling with reproduction. Cell 123:683–695

    Article  PubMed  CAS  Google Scholar 

  15. Soucy ER, Albeanu DF, Fantana AL, Murthy VN, Meister M (2009) Precision and diversity in an odor map on the olfactory bulb. Nat Neurosci 12:210–220

    Article  PubMed  CAS  Google Scholar 

  16. Bacchini A, Gaetani E, Cavaggioni A (1992) Pheromone binding proteins of the mouse, Mus musculus. Experientia 48:419–421

    Article  PubMed  CAS  Google Scholar 

  17. Hurst JL, Robertson DHL, Tolladay U, Beynon RJ (1998) Proteins in urine scent marks of male mouse extend the longevity of olfactory signals. Anim Behav 55:1289–1297

    Article  PubMed  Google Scholar 

  18. Zidek L, Stone MJ, Lato SM, Ellington AD, Novotny MV (1999) NMR Mapping of recombinant mouse major urinary protein I binding site occupied by a pheromone 2-sec-butyl-4,5-dihydrothiazole. Biochemistry 38:9850–9861

    Article  PubMed  CAS  Google Scholar 

  19. Novotny MV, Ma W, Wiesler D, Zidek L (1999) Positive identification of the puberty-accelerating pheromone of the house mouse: the volatiles associating with the major urinary protein. Proc R Soc Lond B 266:2017–2022

    Article  CAS  Google Scholar 

  20. Sharrow SD, Vaughn JL, Zidek L, Novotny MV (2002) Pheromone binding by polymorphic mouse major urinary proteins. Protein Sci 11:2247–2256

    Article  PubMed  CAS  Google Scholar 

  21. Cavaggioni A, Mucignat-Caretta C, Zagotto G (2003) Absolute configuration of 2-sec-butyl-4,5-dihydrothiazole in male mouse urine. Chem Senses 28:791–797

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong SD, Robertson DHL, Cheetman SA, Hurst JL, Beynon RJ (2005) Structural and functional differences in isoforms of mouse major urinary proteins: a male-specific protein that preferentially binds a male pheromone. Biochem J 391:343–350

    Article  PubMed  CAS  Google Scholar 

  23. Bronson FH (1971) Rodent pheromones. Biol Reprod 4:344–357

    PubMed  CAS  Google Scholar 

  24. Finlayson JS, Asofsky R, Potter M, Runner CC (1965) Major urinary protein complex of normal mice: origin. Science 149:981–982

    Article  PubMed  CAS  Google Scholar 

  25. Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    Article  PubMed  CAS  Google Scholar 

  26. Parfentjer JA (1932) Calcium and nitrogen content in urine of normal and cancer mice. Proc Soc Exp Biol Med 29:1285–1287

    Article  Google Scholar 

  27. Robertson DH, Cox KA, Gaskell SJ, Evershed RP, Beynon RJ (1996) Molecular heterogeneity in the major urinary proteins of the house mouse Mus musculus. Biochem J 316:265–272

    PubMed  CAS  Google Scholar 

  28. Mechref Y, Zidek L, Ma W, Novotny MV (2000) Glycosylated major urinary protein of the house mouse: characterization of its N-linked oligosaccharides. Glycobiology 10:231–235

    Article  PubMed  CAS  Google Scholar 

  29. Zidek L, Novotny MV, Stone MJ (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol 6:1118–1121

    Article  PubMed  CAS  Google Scholar 

  30. Timm DE, Baker LJ, Mueller H, Zidek L, Novotny MV (2001) Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Protein Sci 10:997–1004

    Article  PubMed  CAS  Google Scholar 

  31. Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE, Robertson DHL, Cavaggioni A, Beynon RJ (2001) Individual recognition in mice mediated by major urinary proteins. Nature 414:631–634

    Article  PubMed  CAS  Google Scholar 

  32. Stopka P, Janotova K, Heyrovsky D (2007) The advertisement role of major urinary proteins in mice. Physiol Behav 91:667–670

    Article  PubMed  CAS  Google Scholar 

  33. Jemiolo B, Alberts J, Sochinski-Wiggins S, Harvey S, Novotny M (1985) Behavioural and endocrine responses of female mice to synthetic analogues of volatile compounds in male urine. Anim Behav 33:1114–1118

    Article  Google Scholar 

  34. Schwende FJ, Wiesler D, Jorgenson JW, Carmack M, Novotny M (1986) Urinary volatile constituents of the house mouse, Mus musculus, and their endocrine dependency. J Chem Ecol 12:277–296

    Article  CAS  Google Scholar 

  35. Andreolini F, Jemiolo B, Novotny M (1987) Dynamics of extraction of urinary chemosignals in the house mouse (Mus musculus) during the natural estrous cycle. Experientia 43:998–1002

    Article  PubMed  CAS  Google Scholar 

  36. Harvey S, Jemiolo B, Novotny M (1989) Pattern of volatile compounds in dominant and subordinate male mouse urine. J Chem Ecol 15:2061–2071

    Article  CAS  Google Scholar 

  37. Ma W, Miao Z, Novotny MV (1998) The role of the adrenal gland and adrenal-mediated chemosignals in estrus suppression in the house mouse: the Lee-Boot effect revisited. Biol Reprod 59:1317–1320

    Article  PubMed  CAS  Google Scholar 

  38. Novotny MV, Soini HA, Koyama S, Bruce KE, Penn D (2007) Chemical identification of MHC-influenced volatile compounds in mouse urine. I: Quantitative proportions of major chemosignals. J Chem Ecol 33:417–434

    CAS  Google Scholar 

  39. Soini HA, Wiesler D, Koyama S, Féron C, Baudoin C, Novotny MV (2009) Differences in urinary scents of two related mouse species, Mus spicilegus and Mus domesticus. J Chem Ecol 35:580–589

    Article  PubMed  CAS  Google Scholar 

  40. Patris B, Baudoin C (2000) A comparative study of parental care between two rodent species: implications for the mating system of the mound-building mouse Mus spicilegus. Behav Processes 51:35–43

    Article  PubMed  Google Scholar 

  41. Poteaux B, Gouat P, Jacquot C, Christophe N, Baudoin C (2008) Socio-genetic structure of mound-building mice, Mus spicilegus, in autumn and early spring. Biol J Linn Soc Lond 93:689–699

    Article  Google Scholar 

  42. Nishimura K, Utsumi K, Yuhara M, Fujitani Y (1989) Identification of puberty-accelerating pheromones in male mouse urine. J Exp Zool 251:300–3005

    Article  PubMed  CAS  Google Scholar 

  43. Singer AG, Beauchamp GK, Yamazaki K (1997) Volatile signals of the major histocompatibility complex in male mouse urine. Proc Natl Acad Sci USA 94:2210–2214

    Article  PubMed  CAS  Google Scholar 

  44. Zhang JX, Rao XP, Sun L, Zhao CH, Qin XW (2007) Putative chemical signals about sex, individuality, and genetic background in the preputial gland and urine of the house mouse (Mus musculus). Chem Senses 32:293–303

    Article  PubMed  CAS  Google Scholar 

  45. Lin DY, Zhang SZ, Block E, Katz LC (2005) Encoding social signals in the mouse main olfactory bulb. Nature 434:470–477

    Article  PubMed  CAS  Google Scholar 

  46. Willse A, Kwak J, Yamazaki K, Preti G, Wahl JH, Beauchamp GK (2006) Individual odortypes: interaction of MHC and background genes. Immunogenetics 58:967–982

    Article  PubMed  CAS  Google Scholar 

  47. Osada K, Tashiro T, Mori K, Izumi H (2008) The identification of attractive volatiles in aged male mouse urine. Chem Senses 33:815–823

    Article  PubMed  CAS  Google Scholar 

  48. Schaefer ML, Wongravee K, Holmboe ME, Heinrich NM, Dixon SJ, Zeskind JE, Kulaga HM, Brereton RG, Reed RR, Trevejo JM (2010) Mouse urinary biomarkers provide signatures of maturation, diet, stress level and diurnal rhythm. Chem Senses 35:459–471

    Article  PubMed  CAS  Google Scholar 

  49. Schwende FJ, Jorgenson JW, Novotny M (1984) A possible chemical basis for the histocompatibility-related mating preference in mice. J Chem Ecol 10:1603–1615

    Article  CAS  Google Scholar 

  50. Jemiolo B, Gubernick DJ, Yoder MC, Novotny M (1994) Chemical characterization of urinary volatile compounds of Peromyscus californicus, a monogamous biparental rodent. J Chem Ecol 20:2489–2500

    Article  CAS  Google Scholar 

  51. Röck F, Mueller S, Weimar U, Rammensee HG, Overath P (2006) Comparative analysis of volatile constituents from mice and their urine. J Chem Ecol 32:1333–1346

    Article  PubMed  Google Scholar 

  52. Soini HA, Bruce KE, Wiesler D, David F, Sandra P, Novotny MV (2005) Stir bar sorptive extraction: a new quantitative and comprehensive sampling technique for determination of chemical signal profiles from biological media. J Chem Ecol 31:377–392

    Article  PubMed  CAS  Google Scholar 

  53. Röck F, Hadeler KP, Rammensee HG, Overath P (2007) Quantitative analysis of mouse urine volatiles: in search of MHC-dependent differences. PLoS One 5(e429):1–8

    Google Scholar 

  54. Baltussen E, David F, Sandra P, Janssen H-G, Cramers CA (2002) Sorptive sample preparation—a review. Anal Bioanal Chem 373:3–22

    Article  PubMed  CAS  Google Scholar 

  55. Novotny MV, Soini HA (2008) Volatile mammalian chemosignals: structural and quantitative aspects. In: Hurst JL, Beynon RJ, Roberts SC, Wyatt T (eds) Chemical signals in vertebrates 11. Springer, New York, pp 13–23

    Chapter  Google Scholar 

  56. Soini HA, Koyama S, Karn RC, Novotny MV (2013) To be published

    Google Scholar 

  57. Kovats E (1965) Gas chromatographic characterization of organic substances in the retention index system. In: Giddings JC, Keller RA (eds) Advances in chromatography. Marcel Dekker, New York, pp 229–247

    Google Scholar 

  58. Novotny M, Lee ML, Bartle KD (1974) Some analytical aspects of the chromatographic headspace concentration method using a porous polymer. Chromatographia 7:333–338

    Article  CAS  Google Scholar 

  59. Novotny M, McConnell ML, Lee ML, Farlow R (1974) High resolution gas-chromatographic analysis of the volatile constituents of body fluids with use of glass capillary columns. Clin Chem 20:1105–1110

    PubMed  CAS  Google Scholar 

  60. Novotny M, McConnell ML, Lee ML (1974) Some aspects of high-resolution gas-chromatographic analysis of complex volatile samples. J Agric Food Chem 22:765–769

    Article  PubMed  CAS  Google Scholar 

  61. Baltussen E, David F, Sandra P, Janssen H-G, Cramers CA (1998) Sorption tubes packed with polydimethylsiloxane: a new and promising technique for the preconcentration of volatiles and semivolatiles from air and gaseous samples. J High Resolut Chromatogr 21:332–340

    Article  CAS  Google Scholar 

  62. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747

    Article  CAS  Google Scholar 

  63. Tienpont B, David F, Desmet K, Sandra P (2002) Stir bar sorptive extraction-thermal desorption-capillary GC-MS applied to biological fluids. Anal Bioanal Chem 373:46–55

    Article  PubMed  CAS  Google Scholar 

  64. Blanchard J (1981) Evaluation of the relative efficacy of various techniques for deproteinizing plasma samples prior to high-performance liquid chromatographic analysis. J Chromatogr 226:455–460

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly sponsored by the METACyt Initiative of Indiana University, a major grant from the Lilly Endowment, Inc., and the Lilly Chemistry Alumni Chair funds (to M.V.N.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Novotny, M.V., Soini, H.A. (2013). Analysis of Volatile Mouse Pheromones by Gas Chromatography Mass Spectrometry. In: Touhara, K. (eds) Pheromone Signaling. Methods in Molecular Biology, vol 1068. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-619-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-619-1_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-618-4

  • Online ISBN: 978-1-62703-619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics