Skip to main content
Log in

Individual odortypes: interaction of MHC and background genes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Genes of the major histocompatibility complex (MHC) influence the urinary odors of mice. Behavioral studies have shown (1) that mice differing only at MHC have distinct urinary odors, suggesting an MHC odor phenotype or odortype; (2) that the MHC odortype can be recognized across different background strains; and (3) that the MHC odortype is not an additive trait. Very little is known about the odorants underlying this behavioral phenotype. We compared urinary volatile profiles of two MHC haplotypes (H2b and H2k) and their heterozygous cross (H2b×H2k) for two different background strains (C57BL/6J and BALB/c) using solid phase micro-extraction (SPME) headspace analysis and gas chromatography/mass spectrometry (GC/MS). Both MHC and background genes substantially influence the volatile profile. Of 148 compounds screened, 108 of them significantly differ between the six genotypes. Surprisingly, for numerous compounds, their MHC associations are moderated by background genes (i.e., there is a significant MHC × background interaction effect in the statistical model relating genotype to relative compound concentration). These interactions account for nearly 30% of the total genetic effect on the volatile profile. MHC heterozygosity further extends the odortype diversity. For many compounds, the volatile expression for the heterozygote is more extreme than the expression for either homozygote, suggesting a heterozygous-specific odortype. The remarkable breadth of effects of MHC variation on concentrations of metabolites and the interaction between MHC and other genetic variation implies the existence of as yet unknown processes by which variation in MHC genes gives rise to variation in volatile molecules in body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altman PL, Katz DD (eds) (1979) Biological handbooks III. Inbred and genetically defined strains of laboratory animals. Part 1. Mouse and rat. Federation of American Societies for Experimental Biology, pp 124–125

  • Bard J, Yamazaki K, Curran M, Boyse EA, Beauchamp GK (2000) Effect of B2m gene disruption on MHC-determined odortypes. Immunogenetics 51:514–518

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp GK, Yamazaki K (2003) Chemical signaling in mice. Biochem Soc Trans 31:147–151

    PubMed  CAS  Google Scholar 

  • Beauchamp GK, Yamazaki K, Duncan H, Bard J, Boyse EA (1990) Genetic determination of individual mouse odor. In: MacDonald DW, Muller-Schwarze D, Natynczuk SE (eds) Chemical signals in vertebrates. Oxford University Press, pp 244–254

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, Ser B 57:289–300

    Google Scholar 

  • Benyon RJ, Hurst JL (2003) Multiple roles of major urinary proteins in the house mouse, Mus domesticus. Biochem Soc Trans 31:142–146

    Google Scholar 

  • Boehm T, Zufall F (2006) MHC peptides and the sensory evaluation of genotype. Trends Neurosci 29:100–107

    Article  PubMed  CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Culverhouse R, Klein T, Shannon W (2004) Detecting epistatic interactions contributing to quantitative traits. Genet Epidemiol 27:141–152

    Article  PubMed  Google Scholar 

  • Eggert F, Holler C, Luszyk D, Muller-Ruchholtz W, Ferstl R (1996) MHC-associated and MHC-independent urinary chemosignals in mice. Physiol Behav 59:57–62

    Article  PubMed  CAS  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Holley A, Duchamp A, Revial MF, Juge A, MacLeod P (1974) Qualitative and quantitative discrimination in the frog olfactory receptors: analysis from electrophysiological data. Ann NY Acad Sci 237:102–114

    PubMed  CAS  Google Scholar 

  • Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE, Robertson DHL, Cavaggioni A, Beynon RJ (2001) Individual recognition in mice mediated by major urinary proteins. Nature 414:631–634

    Article  PubMed  CAS  Google Scholar 

  • Kayali-Sayadi MN, Bautista JM, Polo-Diez LM, Salazar I (2003) Identification of pheromones in mouse urine by head-space solid phase microextraction followed by gas chromatography-mass spectrometry. J Chromatogr B 796:55–62

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier

  • Leinders-Zufall T, Brennan P, Widmayer P, Chandramani S, Maul-Pavicic A, Jager M, Li X-H, Breer H, Zufall F, Boehm T (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Liebich HM, Zlatkis A, Bertsch W, Van Dahm R, Whitten WK (1977) Identification of dihydrothiazoles in urine of male mice. Biomed Mass Spectrom 4:69–72

    Article  PubMed  CAS  Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  • McClelland EE, Damjanovich K, Gardner K, Groesbeck ZJ, Ma MS, Nibley M, Richardson KS, Wilkinson M, Morrison LC, Bernhardt P, Potts WK (2004) Infection-dependent phenotypes in MHC-congenic mice are not due to MHC: can we trust congenic animals? BMC Immunol 5:14–20

    Article  PubMed  CAS  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  Google Scholar 

  • Novotny M (2003) Pheromones, binding proteins and receptor responses in rodents. Biochem Soc Trans 31:117–122

    Article  PubMed  CAS  Google Scholar 

  • Penn D, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci 99:11260–11264

    Article  PubMed  CAS  Google Scholar 

  • Potts WK, Manning JL, Wakeland EK (1991) Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352:619–621

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Restrepo D, Lin W, Salcedo E, Yamazaki K, Beauchamp G (2006) Odortypes and MHC peptides: complementary chemosignals of MHC haplotype? Trends Neurosci (in press). DOI http://dx.doi.org/10.1016/j.tins.2006.08.001

  • Robertson DHL, Cox KA, Gaskell SJ, Evershed RP, Beynon RJ (1996) Molecular heterogeneity in the major urinary proteins of the house mouse Mus musculus. Biochem J 316:265–272

    PubMed  CAS  Google Scholar 

  • Singer AG, Beauchamp GK, Yamazaki K (1997) Volatile signals of the major histocompatibility complex in male mouse urine. Proc Natl Acad Sci 94:2210–2214

    Article  PubMed  CAS  Google Scholar 

  • Thomas L (1975) Symbiosis as an immunologic problem. The immune system and infectious disease. In: Neter E, Milgrom F (eds) Fourth international convocation of immunology. S. Karger, Basel., Buffalo, New York, 2

  • Thomas DC (2004) Statistical methods in genetic epidemiology. Oxford University Press

  • Willse A, Belcher A, Preti G, Wahl JH, Thresher M, Yang P, Yamazaki K, Beauchamp GK (2005) Identification of major histocompatibility complex-regulated body odorants by statistical analysis of a comparative gas chromatography-mass spectrometry experiment. Anal Chem 77:2348–2361

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Yamazaki K, Beauchamp GK, Bard J, Thomas L, Boyse EA (1981) Distinctive urinary odors governed by the major histocompatibility complex locus of the mouse. Proc Natl Acad Sci 78:5817–5820

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Boyse EA, Mike V, Thaler HT, Mathieson BJ, Abbott J, Boyse J, Zayas ZA, Thomas L (1976) Control of mating preferences in mice by genes in the major histocompatibility complex. J Exp Med 144:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Yamaguchi M, Baranoski L, Bard J, Boyse EA, Thomas L (1979) Recognition among mice. Evidence from the use of a Y-maze differentially scented by congenic mice of different major histocompatibility types. J Exp Med 150:755–760

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Yamaguchu M, Beauchamp GK, Bard J, Boyse EA, Thomas L (1981) Chemo-sensation: an aspect of the uniqueness of the individual (p. 85–91). In: Cagan RH, Kare MR (eds) Biochemistry of taste and olfaction. Academic

  • Yamazaki K, Beauchamp GK, Egorov IK, Bard J, Thomas L, Boyse EA (1983) Sensory distinction between H-2b and H-2bm1 mutant mice. Proc Natl Acad Sci 80:5685–5688

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Beauchamp G, Thomas L, Boyse E (1984) Chemosensory identity of H-2 heterozygotes. J Mol Cell Immunol 1:79–82

    PubMed  CAS  Google Scholar 

  • Yamazaki K, Beauchamp G, Matsuzaki O, Bard J, Boyse E (1986) Participation of the murine X and Y chromosomes in genetically determined chemosensory identity. Proc Natl Acad Sci 83:4438–4440

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Beauchamp G, Shen F, Bard J, Boyse E (1994) Discrimination of odortypes determined by the major histocompatibility complex among outbred mice. Proc Natl Acad Sci 91:3735–3738

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Beauchamp Boyse EA, Curran M, Bard J (2000) Parent-progeny recognition as a function of MHC-odortype identity. Proc Natl Acad Sci 97:10500–10502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ARO contract DAAD19-03-1-0109. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. A.W. was supported by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Some of the work reported here was also supported by the National Science Foundation (IBN 0112528; K.Y. and G.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Willse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willse, A., Kwak, J., Yamazaki, K. et al. Individual odortypes: interaction of MHC and background genes. Immunogenetics 58, 967–982 (2006). https://doi.org/10.1007/s00251-006-0162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0162-x

Keywords

Navigation