Skip to main content

Principles of Proteomic Approaches to the Cytoskeleton

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

  • 1105 Accesses

Abstract

In combination with bioinformatics and molecular biological techniques proteomic approaches become more and more indispensable in order to deepen our understanding of cellular functions. Since the cytoskeleton is presented by a highly dynamic network, engaged in many basic cellular functions like cell growth, migration, or intracellular transport mechanisms, many open questions remain to be clarified. Moreover, this concerns triggers of cytoskeletal remodeling or dynamics of membranous interaction partners. A proteomic description should exceed the pure listing of its constituents but rather should include functional proteomics as well as the description of protein interaction networks. Due to its mediating nature between cytosolic and membranous compartments of the cell different techniques are necessary to complete the investigation of the neuronal cytoskeleton. Within this article, we present a set of state-of-the-art approaches for further proteomic research of the cellular cytoskeleton and beyond.

Katrin Marcus and Bodo Schoenebeck contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkins MR, Sanchez JC, Gooley AA et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    PubMed  CAS  Google Scholar 

  2. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323

    Article  PubMed  CAS  Google Scholar 

  3. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  4. de Graauw M, Hensbergen P, van de Water B (2006) Phospho-proteomic analysis of cellular signaling. Electrophoresis 27:2676–2686

    Article  PubMed  CAS  Google Scholar 

  5. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    Article  PubMed  CAS  Google Scholar 

  6. Shi Y, Xu P, Qin J (2011) Ubiquitinated proteome: ready for global? Mol Cell Proteomics 10:R110.006882

    Article  PubMed  CAS  Google Scholar 

  7. Selby DS, Larsen MR, Calvano CD, Jensen ON (2008) Identification and characterization of N-glycosylated proteins using proteomics. Methods Mol Biol 484:263–276

    Article  PubMed  CAS  Google Scholar 

  8. Bodo J, Hsi ED (2011) Phosphoproteins and the dawn of functional phenotyping. Pathobiology 78:115–121

    Article  PubMed  CAS  Google Scholar 

  9. Chouchani ET, James AM, Fearnley IM et al (2011) Proteomic approaches to the ­characterization of protein thiol modification. Curr Opin Chem Biol 15:120–128

    Article  PubMed  CAS  Google Scholar 

  10. Thamsen M, Jakob U (2011) The redoxome: proteomic analysis of cellular redox networks. Curr Opin Chem Biol 15:113–119

    Article  PubMed  CAS  Google Scholar 

  11. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  12. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    Article  PubMed  CAS  Google Scholar 

  13. Konopka G (2011) Functional genomics of the brain: uncovering networks in the CNS using a systems approach. Wiley Interdiscip Rev Syst Biol Med 3:628–648

    Article  PubMed  CAS  Google Scholar 

  14. Becker M, Schindler J, Nothwang HG (2006) Neuroproteomics—the tasks lying ahead. Electrophoresis 27:2819–2829

    Article  PubMed  CAS  Google Scholar 

  15. Bayés A, Grant SGN (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10:635–646

    Article  PubMed  CAS  Google Scholar 

  16. Sun C, Rosendahl AH, Ansari D, Andersson R (2011) Proteome-based biomarkers in pancreatic cancer. World J Gastroenterol 17:4845–4852

    Article  PubMed  CAS  Google Scholar 

  17. Pawa N, Wright JM, Arulampalam THA (2010) Mass spectrometry based proteomic profiling for pancreatic cancer. JOP 11:423–426

    PubMed  Google Scholar 

  18. Park JP, Park MK, Yun JW (2011) Proteomic biomarkers for diagnosis in acute myocardial infarction. Biomarkers 16:1–11

    Article  PubMed  CAS  Google Scholar 

  19. Kalinina J, Peng J, Ritchie JC, Van Meir EG (2011) Proteomics of gliomas: initial biomarker discovery and evolution of technology. Neuro Oncol 13:926–942

    Article  PubMed  CAS  Google Scholar 

  20. Roti G, Stegmaier K (2012) Genetic and proteomic approaches to identify cancer drug targets. Br J Cancer 106:254–261

    Article  PubMed  CAS  Google Scholar 

  21. del Castillo C, Morales L, Alguacil LF et al (2009) Proteomic analysis of the nucleus accumbens of rats with different vulnerability to cocaine addiction. Neuropharmacology 57:41–48

    Article  PubMed  CAS  Google Scholar 

  22. Katagiri T, Hatano N, Aihara M et al (2010) Proteomic analysis of proteins expressing in regions of rat brain by a combination of SDS-PAGE with nano-liquid chromatography-quadrupole-time of flight tandem mass spectrometry. Proteome Sci 8:41

    Article  PubMed  CAS  Google Scholar 

  23. Tribl F, Marcus K, Meyer HE et al (2006) Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle. J Neural Transm 113:741–749

    Article  PubMed  CAS  Google Scholar 

  24. Tribl F, Marcus K, Bringmann G et al (2006) Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm 113:1041–1054

    Article  PubMed  CAS  Google Scholar 

  25. Dreger M (2003) Proteome analysis at the level of subcellular structures. Eur J Biochem 270:589–599

    Article  PubMed  CAS  Google Scholar 

  26. Taylor SW, Fahy E, Ghosh SS (2003) Global organellar proteomics. Trends Biotechnol 21:82–88

    Article  PubMed  CAS  Google Scholar 

  27. Schröder BA, Wrocklage C, Hasilik A, Saftig P (2010) The proteome of lysosomes. Proteomics 10:4053–4076

    Article  PubMed  CAS  Google Scholar 

  28. Davidsson P, Folkesson S, Christiansson M et al (2002) Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 16:2083–2088

    Article  PubMed  CAS  Google Scholar 

  29. Olsen JV, Ong S-E, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608–614

    Article  PubMed  CAS  Google Scholar 

  30. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  31. Biringer RG, Amato H, Harrington MG et al (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5:144–153

    Article  PubMed  CAS  Google Scholar 

  32. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  33. Winter D, Steen H (2011) Optimization of cell lysis and protein digestion protocols for the analysis of HeLa S3 cells by LC-MS/MS. Proteomics 11:4726–4730

    Article  PubMed  CAS  Google Scholar 

  34. Lu B, McClatchy DB, Kim JY, Yates JR (2008) Strategies for shotgun identification of integral membrane proteins by tandem mass spectrometry. Proteomics 8:3947–3955

    Article  PubMed  CAS  Google Scholar 

  35. Anderson L (2005) Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 563:23–60

    Article  PubMed  CAS  Google Scholar 

  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  37. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    PubMed  CAS  Google Scholar 

  38. Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408

    Article  PubMed  CAS  Google Scholar 

  39. Switzer RC, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237

    Article  PubMed  CAS  Google Scholar 

  40. Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Biosci Rep 25:19–32

    Article  PubMed  CAS  Google Scholar 

  41. Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852–1858

    Article  PubMed  CAS  Google Scholar 

  42. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  43. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  44. Jensen EC (2012) The basics of Western blotting. Anat Rec (Hoboken) 295:369–371

    Article  Google Scholar 

  45. Müller T, Loosse C, Schrötter A et al (2011) The AICD interacting protein DAB1 is ­up-regulated in Alzheimer frontal cortex brain samples and causes deregulation of proteins involved in gene expression changes. Curr Alzheimer Res 8:573–582

    Article  PubMed  Google Scholar 

  46. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    PubMed  CAS  Google Scholar 

  47. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  48. Taylor NL, Heazlewood JL, Millar AH (2011) The Arabidopsis thaliana 2-D gel mitochondrial proteome: refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications. Proteomics 11:1720–1733

    Article  PubMed  CAS  Google Scholar 

  49. Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    Article  PubMed  CAS  Google Scholar 

  50. Bjellqvist B, Ek K, Righetti PG et al (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6:317–339

    Article  PubMed  CAS  Google Scholar 

  51. Görg A, Postel W, Günther S (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546

    Article  PubMed  Google Scholar 

  52. Görg A, Drews O, Lück C et al (2009) 2-DE with IPGs. Electrophoresis 30(Suppl 1):S122–S132

    Article  PubMed  Google Scholar 

  53. Luhn S, Berth M, Hecker M, Bernhardt J (2003) Using standard positions and image fusion to create proteome maps from collections of two-dimensional gel electrophoresis images. Proteomics 3:1117–1127

    Article  PubMed  CAS  Google Scholar 

  54. Dowsey AW, English JA, Lisacek F et al (2010) Image analysis tools and emerging algorithms for expression proteomics. Proteomics 10:4226–4257

    Article  PubMed  CAS  Google Scholar 

  55. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  Google Scholar 

  56. Zahedi R-P, Meisinger C, Sickmann A (2005) Two-dimensional benzyldimethyl-n-hexadecylammonium chloride/SDS-PAGE for membrane proteomics. Proteomics 5:3581–3588

    Article  PubMed  CAS  Google Scholar 

  57. Hartinger J, Stenius K, Högemann D, Jahn R (1996) 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem 240:126–133

    Article  PubMed  CAS  Google Scholar 

  58. Macfarlane DE (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride-sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal Biochem 176:457–463

    Article  PubMed  CAS  Google Scholar 

  59. Helling S, Schmitt E, Joppich C et al (2006) 2-D differential membrane proteome analysis of scarce protein samples. Proteomics 6:4506–4513

    Article  PubMed  CAS  Google Scholar 

  60. Eley MH, Burns PC, Kannapell CC, Campbell PS (1979) Cetyltrimethylammonium bromide polyacrylamide gel electrophoresis: estimation of protein subunit molecular weights using cationic detergents. Anal Biochem 92:411–419

    Article  PubMed  CAS  Google Scholar 

  61. Rais I, Karas M, Schägger H (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics 4:2567–2571

    Article  PubMed  CAS  Google Scholar 

  62. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  63. Alban A, David SO, Bjorkesten L et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  PubMed  CAS  Google Scholar 

  64. Mitulovic G, Mechtler K (2006) HPLC techniques for proteomics analysis-a short overview of latest developments. Brief Funct Genomic Proteomic 5:249–260

    Article  PubMed  CAS  Google Scholar 

  65. Carr PW, Stoll DR, Wang X (2011) Perspectives on recent advances in the speed of high-performance liquid chromatography. Anal Chem 83:1890–1900

    Article  PubMed  CAS  Google Scholar 

  66. Tao D, Zhang L, Shan Y, Liang Z, Zhang Y (2011) Recent advances in micro-scale and nano-scale high-performance liquid-phase chromatography for proteome research. Anal Bioanal Chem 399:229–241

    Article  PubMed  CAS  Google Scholar 

  67. Küster B, Wheeler SF, Hunter AP et al (1997) Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem 250:82–101

    Article  PubMed  Google Scholar 

  68. Marcus K, Joppich C, May C et al (2009) High-resolution 2DE. Methods Mol Biol 519:221–240

    Article  PubMed  CAS  Google Scholar 

  69. Neville B (1998) Reversed-phase HPLC. In: Rapley R, Walker JM (eds) Molecular biomethods handbook, 1st edn. Humana, New York

    Google Scholar 

  70. Erni F, Steuer W, Bosshardt H (1987) Automation and validation of HPLC-systems. Chromatographia 24:201–207

    Article  CAS  Google Scholar 

  71. Köcher T, Swart R, Mechtler K (2011) Ultra-high-pressure RPLC hyphenated to an LTQ-Orbitrap Velos reveals a linear relation between peak capacity and number of identified peptides. Anal Chem 83:2699–2704

    Article  PubMed  CAS  Google Scholar 

  72. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    Article  PubMed  CAS  Google Scholar 

  73. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  74. Zhang X, Fang A, Riley CP et al (2010) Multi-dimensional liquid chromatography in proteomics–a review. Anal Chim Acta 664:101–113

    Article  PubMed  CAS  Google Scholar 

  75. Wang Z, Hill S, Luther JM et al (2012) Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics 12:329–338

    Article  PubMed  CAS  Google Scholar 

  76. Chervet JP, Ursem M, Salzmann JP (1996) Instrumental requirements for nanoscale liquid chromatography. Anal Chem 68:1507–1512

    Article  PubMed  CAS  Google Scholar 

  77. Contrepois K, Ezan E, Mann C, Fenaille F (2010) Ultra-high performance liquid chromatography-mass spectrometry for the fast profiling of histone post-translational modifications. J Proteome Res 9:5501–5509

    Article  PubMed  CAS  Google Scholar 

  78. Guillarme D, Ruta J, Rudaz S, Veuthey J-L (2010) New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches. Anal Bioanal Chem 397:1069–1082

    Article  PubMed  CAS  Google Scholar 

  79. Jorgenson JW (2010) Capillary liquid chromatography at ultrahigh pressures. Annu Rev Anal Chem (Palo Alto Calif) 3:129–150

    Article  CAS  Google Scholar 

  80. Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140–150

    Article  PubMed  CAS  Google Scholar 

  81. Xie F, Liu T, Qian W-J et al (2011) Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 286:25443–25449

    Article  PubMed  CAS  Google Scholar 

  82. Han J, Datla R, Chan S, Borchers CH (2009) Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis 1:1665–1684

    Article  PubMed  CAS  Google Scholar 

  83. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  CAS  Google Scholar 

  84. Nyman TA (2001) The role of mass spectrometry in proteome studies. Biomol Eng 18:221–227

    Article  PubMed  CAS  Google Scholar 

  85. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  PubMed  CAS  Google Scholar 

  86. Zaluzec EJ, Gage DA, Watson JT (1995) Matrix-assisted laser desorption ionization mass spectrometry: applications in peptide and protein characterization. Protein Expr Purif 6:109–123

    Article  PubMed  CAS  Google Scholar 

  87. Karas M, Glückmann M, Schäfer J (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35:1–12

    Article  PubMed  CAS  Google Scholar 

  88. Nordhoff E, Egelhofer V, Giavalisco P et al (2001) Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry: an analytical challenge for studying complex protein mixtures. Electrophoresis 22:2844–2855

    Article  PubMed  CAS  Google Scholar 

  89. Stühler K, Meyer HE (2004) MALDI: more than peptide mass fingerprints. Curr Opin Mol Ther 6:239–248

    PubMed  Google Scholar 

  90. Loo JA, Udseth HR, Smith RD (1989) Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal Chem 179:404–412

    CAS  Google Scholar 

  91. Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20:362–387

    Article  PubMed  CAS  Google Scholar 

  92. Iribarne JV (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64:2287

    Article  CAS  Google Scholar 

  93. Dole M (1968) Molecular beams of macroions. J Chem Phys 49:2240

    Article  CAS  Google Scholar 

  94. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  95. Wollnik H (1993) Time-of-flight mass analyzers. Mass Spectrom Rev 12:89–114

    Article  CAS  Google Scholar 

  96. Balogh MP (2004) Debating resolution and mass accuracy in mass spectrometry. Spectroscopy 19:34–40

    CAS  Google Scholar 

  97. Schwartz JC, Senko MW, Syka JEP (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13:659–669

    Article  PubMed  CAS  Google Scholar 

  98. March RE (2000) Quadrupole ion trap mass spectrometry: a view at the turn of the century. Int J Mass Spectrom 200:285–312

    Article  CAS  Google Scholar 

  99. Wilm M, Neubauer G, Mann M (1996) Parent ion scans of unseparated peptide mixtures. Anal Chem 68:527–533

    Article  PubMed  CAS  Google Scholar 

  100. Steen H, Küster B, Fernandez M et al (2001) Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal Chem 73:1440–1448

    Article  PubMed  CAS  Google Scholar 

  101. Hunter AP, Games DE (1994) Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Rapid Commun Mass Spectrom 8:559–570

    Article  PubMed  CAS  Google Scholar 

  102. Schlosser A, Pipkorn R, Bossemeyer D, Lehmann WD (2001) Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem 73:170–176

    Article  PubMed  CAS  Google Scholar 

  103. Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8:145–157

    Article  PubMed  CAS  Google Scholar 

  104. Busch F, Paul W (1961) Isotopentrennung mit dem elektrischen Massenfilter. Zeitschrift für Physik 164:581–587

    Article  CAS  Google Scholar 

  105. Douglas DJ, Frank AJ, Mao D (2005) Linear ion traps in mass spectrometry. Mass Spectrom Rev 24:1–29

    Article  PubMed  CAS  Google Scholar 

  106. Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    Article  PubMed  CAS  Google Scholar 

  107. Chi A, Huttenhower C, Geer LY et al (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104:2193–2198

    Article  PubMed  CAS  Google Scholar 

  108. Perdivara I, Petrovich R, Allinquant B et al (2009) Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J Proteome Res 8:631–642

    Article  PubMed  CAS  Google Scholar 

  109. Alley WR, Mechref Y, Novotny MV (2009) Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23:161–170

    Article  PubMed  CAS  Google Scholar 

  110. Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466–4483

    Article  PubMed  CAS  Google Scholar 

  111. Wang Y, Franzen J (1992) The non-linear resonance QUISTOR Part 1. Potential distribution in hyperboloidal QUISTORs. Int J Mass Spectrom Ion Process 112:167–178

    Article  Google Scholar 

  112. Wang Y, Franzen J, Wanczek KP (1993) The non-linear resonance ion trap. Part 2. A general theoretical analysis. Int J Mass Spectrom Ion Process 124:125–144

    Article  CAS  Google Scholar 

  113. Wang Y, Franzen J (1994) The non-linear ion trap. Part 3. Multipole components in three types of practical ion trap. Int J Mass Spectrom Ion Process 132:155–172

    Article  CAS  Google Scholar 

  114. Franzen J (1993) The non-linear ion trap. Part 4. Mass selective instability scan with multipole superposition. Int J Mass Spectrom Ion Process 125:165–170

    Article  CAS  Google Scholar 

  115. Franzen J (1994) The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection. Int J Mass Spectrom Ion Process 130:15–40

    Article  CAS  Google Scholar 

  116. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  PubMed  CAS  Google Scholar 

  117. Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283

    Article  CAS  Google Scholar 

  118. Goodlett DR, Bruce JE, Anderson GA et al (2000) Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searching. Anal Chem 72:1112–1118

    Article  PubMed  CAS  Google Scholar 

  119. Hu Q, Noll RJ, Li H et al (2005) The orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  PubMed  CAS  Google Scholar 

  120. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699

    Article  PubMed  CAS  Google Scholar 

  121. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162

    Article  PubMed  CAS  Google Scholar 

  122. Scigelova M, Makarov A (2006) Orbitrap mass analyzer–overview and applications in proteomics. Proteomics 6(Suppl 2):16–21

    Article  PubMed  CAS  Google Scholar 

  123. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  PubMed  CAS  Google Scholar 

  124. Spengler B, Kirsch D, Kaufmann R, Jaeger E (1992) Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 6:105–108

    Article  PubMed  CAS  Google Scholar 

  125. de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31:129–137

    Article  Google Scholar 

  126. Steen H, Küster B, Mann M (2001) Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36:782–790

    Article  PubMed  CAS  Google Scholar 

  127. Aldini G, Regazzoni L, Orioli M et al (2008) A tandem MS precursor-ion scan approach to identify variable covalent modification of albumin Cys34: a new tool for studying vascular carbonylation. J Mass Spectrom 43:1470–1481

    Article  PubMed  CAS  Google Scholar 

  128. Hopfgartner G, Varesio E, Tschäppät V et al (2004) Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom 39:845–855

    Article  PubMed  CAS  Google Scholar 

  129. Yates JR, Speicher S, Griffin PR, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214:397–408

    Article  PubMed  CAS  Google Scholar 

  130. Boyd RK (1994) Linked-scan techniques for MS/MS using tandem-in-space instruments. Mass Spectrom Rev 13:359–410

    Article  CAS  Google Scholar 

  131. Carr SA, Huddleston MJ, Annan RS (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239:180–192

    Article  PubMed  CAS  Google Scholar 

  132. Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Biochem 65:877–884

    CAS  Google Scholar 

  133. Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D (2007) Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Biochem 79:5991–5999

    CAS  Google Scholar 

  134. Langenfeld E, Zanger UM, Jung K et al (2009) Mass spectrometry-based absolute quantification of microsomal cytochrome P450 2D6 in human liver. Proteomics 9:2313–2323

    Article  PubMed  CAS  Google Scholar 

  135. Unwin RD, Griffiths JR, Leverentz MK et al (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144

    Article  PubMed  CAS  Google Scholar 

  136. Annan RS, Carr SA (1997) The essential role of mass spectrometry in characterizing protein structure: mapping posttranslational modifications. J Protein Chem 16:391–402

    Article  PubMed  CAS  Google Scholar 

  137. Williamson BL, Marchese J, Morrice NA (2006) Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics 5:337–346

    PubMed  CAS  Google Scholar 

  138. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  139. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  140. Biemann K (1990) Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 193:886–887

    Article  PubMed  CAS  Google Scholar 

  141. Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482–2489

    Article  PubMed  CAS  Google Scholar 

  142. McLafferty FW, Tureek F (eds) (1993) Interpretation of mass spectra, 4th edn. University Science, California

    Google Scholar 

  143. Zhu W, Smith JW, Huang C-M (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518

    PubMed  Google Scholar 

  144. Ong S-E, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  145. Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  PubMed  CAS  Google Scholar 

  146. Bettmer J (2010) Application of isotope dilution ICP-MS techniques to quantitative proteomics. Anal Bioanal Chem 397:3495–3502

    Article  PubMed  CAS  Google Scholar 

  147. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  148. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  149. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  PubMed  CAS  Google Scholar 

  150. Yao X, Freas A, Ramirez J et al (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842

    Article  PubMed  CAS  Google Scholar 

  151. Staes A, Demol H, Van Damme J et al (2004) Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3:786–791

    Article  PubMed  CAS  Google Scholar 

  152. Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1:139–145

    Article  PubMed  CAS  Google Scholar 

  153. Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  PubMed  CAS  Google Scholar 

  154. Boehm AM, Pütz S, Altenhöfer D (2007) Precise protein quantification based on peptide quantification using iTRAQ. BMC Bioinformatics 8:214

    Article  PubMed  CAS  Google Scholar 

  155. Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomics Proteomics 5:112–120

    Article  CAS  Google Scholar 

  156. Bantscheff M, Boesche M, Eberhard D et al (2008) Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics 7:1702–1713

    Article  PubMed  CAS  Google Scholar 

  157. Dayon L, Turck N, Scherl A et al (2010) From relative to absolute quantification of tryptic peptides with tandem mass tags: application to cerebrospinal fluid. Chimia (Aarau) 64:132–135

    Article  CAS  Google Scholar 

  158. Brunner A, Keidel E-M, Dosch D et al (2010) ICPLQuant—a software for non-isobaric ­isotopic labeling proteomics. Proteomics 10:315–326

    Article  PubMed  CAS  Google Scholar 

  159. Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  160. Amanchy R, Kalume DE, Iwahori A et al (2005) Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res 4:1661–1671

    Article  PubMed  CAS  Google Scholar 

  161. Meierhofer D, Wang X, Huang L, Kaiser P (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576

    Article  PubMed  CAS  Google Scholar 

  162. Oeljeklaus S, Reinartz BS, Wolf J et al (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11:2567–2580

    Article  PubMed  CAS  Google Scholar 

  163. Krijgsveld J, Ketting RF, Mahmoudi T et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  PubMed  CAS  Google Scholar 

  164. Larance M, Bailly AP, Pourkarimi E et al (2011) Stable-isotope labeling with amino acids in nematodes. Nat Methods 8:849–851

    Article  PubMed  CAS  Google Scholar 

  165. Sury MD, Chen J-X, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    Article  PubMed  CAS  Google Scholar 

  166. Krüger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  CAS  Google Scholar 

  167. Walther DM, Mann M (2011) Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging. Mol Cell Proteomics 10:M110.004523

    Article  PubMed  CAS  Google Scholar 

  168. Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596

    Article  PubMed  CAS  Google Scholar 

  169. Old WM, Meyer-Arendt K, Aveline-Wolf L et al (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  PubMed  CAS  Google Scholar 

  170. Neilson KA, Ali N, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  PubMed  CAS  Google Scholar 

  171. Carvalho PC, Hewel J, Barbosa VC, Yates JR (2008) Identifying differences in protein expression levels by spectral counting and feature selection. Genet Mol Res 7:342–356

    Article  PubMed  CAS  Google Scholar 

  172. Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  PubMed  CAS  Google Scholar 

  173. Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 74:4741–4749

    Article  PubMed  CAS  Google Scholar 

  174. Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323

    Article  PubMed  CAS  Google Scholar 

  175. Higgs RE, Knierman MD, Gelfanova V et al (2005) Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res 4:1442–1450

    Article  PubMed  CAS  Google Scholar 

  176. Wang G, Wu WW, Zeng W et al (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res 5:1214–1223

    Article  PubMed  CAS  Google Scholar 

  177. Zybailov B, Coleman MK, Florens L, Washburn MP (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77:6218–6224

    Article  PubMed  CAS  Google Scholar 

  178. Pan S, Aebersold R, Chen R et al (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8:787–797

    Article  PubMed  CAS  Google Scholar 

  179. Brun V, Masselon C, Garin J, Dupuis A (2009) Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 72:740–749

    Article  PubMed  CAS  Google Scholar 

  180. Gerber SA, Rush J, Stemman O et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945

    Article  PubMed  CAS  Google Scholar 

  181. Stahl-Zeng J, Lange V, Ossola R et al (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6:1809–1817

    Article  PubMed  CAS  Google Scholar 

  182. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588

    PubMed  CAS  Google Scholar 

  183. Keshishian H, Addona T, Burgess M et al (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6:2212–2229

    Article  PubMed  CAS  Google Scholar 

  184. Brun V, Dupuis A, Adrait A et al (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149

    Article  PubMed  CAS  Google Scholar 

  185. Brownridge P, Holman SW, Gaskell SJ et al (2011) Global absolute quantification of a proteome: challenges in the deployment of a QconCAT strategy. Proteomics 11:2957–2970

    Article  PubMed  CAS  Google Scholar 

  186. Pratt JM, Simpson DM, Doherty MK et al (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029–1043

    Article  PubMed  CAS  Google Scholar 

  187. Dupuis A, Hennekinne J-A, Garin J, Brun V (2008) Protein standard absolute quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics 8:4633–4636

    Article  PubMed  CAS  Google Scholar 

  188. Kandel ER, Schwartz JH, Jessell TM (eds) (2000) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  189. McEwen BS (2012) The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev Neurobiol 72:878–890

    Article  PubMed  CAS  Google Scholar 

  190. Gogolla N, Galimberti I, Caroni P (2007) Structural plasticity of axon terminals in the adult. Curr Opin Neurobiol 17:516–524

    Article  PubMed  CAS  Google Scholar 

  191. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  PubMed  CAS  Google Scholar 

  192. Rabilloud T (2003) Membrane proteins ride shotgun. Nat Biotechnol 21:508–510

    Article  PubMed  CAS  Google Scholar 

  193. Macher BA, Yen T-Y (2007) Proteins at membrane surfaces-a review of approaches. Mol Biosyst 3:705–713

    Article  PubMed  CAS  Google Scholar 

  194. Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070

    Article  PubMed  CAS  Google Scholar 

  195. Josic D, Zeilinger K (1996) Membrane proteins. Methods Enzymol 271:113–134

    Article  PubMed  CAS  Google Scholar 

  196. Roy I, Mondal K, Gupta MN (2007) Leveraging protein purification strategies in proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 849:32–42

    Article  PubMed  CAS  Google Scholar 

  197. Clifton JG, Li X, Reutter W et al (2007) Comparative proteomics of rat liver and Morris hepatoma 7777 plasma membranes. J Chromatogr B Analyt Technol Biomed Life Sci 849:293–301

    Article  PubMed  CAS  Google Scholar 

  198. Clifton JG, Brown MK, Huang F et al (2006) Identification of members of the annexin family in the detergent-insoluble fraction of rat Morris hepatoma plasma membranes. J Chromatogr A 1123:205–211

    Article  PubMed  CAS  Google Scholar 

  199. Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30(Suppl 1):S174–S180

    Article  PubMed  Google Scholar 

  200. Josic D, Clifton JG (2007) Mammalian plasma membrane proteomics. Proteomics 7:3010–3029

    Article  PubMed  CAS  Google Scholar 

  201. Cordwell SJ, Thingholm TE (2010) Technologies for plasma membrane proteomics. Proteomics 10:611–627

    Article  PubMed  CAS  Google Scholar 

  202. Tauber R, Reutter W (1978) Protein degradation in the plasma membrane of regenerating liver and Morris hepatomas. Eur J Biochem 83:37–45

    Article  PubMed  CAS  Google Scholar 

  203. Cao R, Li X, Liu Z et al (2006) Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J Proteome Res 5:634–642

    Article  PubMed  CAS  Google Scholar 

  204. Schindler J, Lewandrowski U, Sickmann A et al (2006) Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol Cell Proteomics 5:390–400

    PubMed  CAS  Google Scholar 

  205. Blonder J, Terunuma A, Conrads TP et al (2004) A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. J Invest Dermatol 123:691–699

    Article  PubMed  CAS  Google Scholar 

  206. Navarre C, Degand H, Bennett KL et al (2002) Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. Proteomics 2:1706–1714

    Article  PubMed  CAS  Google Scholar 

  207. Zhang L, Xie J, Wang X et al (2005) Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins. Proteomics 5:4510–4524

    Article  PubMed  CAS  Google Scholar 

  208. Chang PS, Absood A, Linderman JJ, Omann GM (2004) Magnetic bead isolation of neutrophil plasma membranes and quantification of membrane-associated guanine nucleotide binding proteins. Anal Biochem 325:175–184

    Article  PubMed  CAS  Google Scholar 

  209. Zhang W, Zhou G, Zhao Y et al (2003) Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 24:2855–2863

    Article  PubMed  CAS  Google Scholar 

  210. Elia G (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8:4012–4024

    Article  PubMed  CAS  Google Scholar 

  211. Zhao Y, Zhang W, Kho Y, Zhao Y (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823

    Article  PubMed  CAS  Google Scholar 

  212. Zhang W, Wang H, Wang J et al (2006) Multiresidue determination of zeranol and related compounds in bovine muscle by gas chromatography/mass spectrometry with immunoaffinity cleanup. J AOAC Int 89:1677–1681

    PubMed  CAS  Google Scholar 

  213. Lawson EL, Clifton JG, Huang F et al (2006) Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes. Electrophoresis 27:2747–2758

    Article  PubMed  CAS  Google Scholar 

  214. Ghosh D, Krokhin O, Antonovici M et al (2004) Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res 3:841–850

    Article  PubMed  CAS  Google Scholar 

  215. Kullolli M, Hancock WS, Hincapie M (2008) Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins. J Sep Sci 31:2733–2739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully note Helga Schulze for image editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Schoenebeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Loosse, C., Marcus, K., Schoenebeck, B. (2013). Principles of Proteomic Approaches to the Cytoskeleton. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics