Skip to main content

High-Resolution 2DE

  • Protocol
  • First Online:
Two-Dimensional Electrophoresis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 519))

Summary

About 30 years ago two-dimensional gel electrophoresis (2DE) was developed independently by Klose and O’Farrell representing the combination of two orthogonal separation techniques. In the first dimension the proteins are separated by isoelectric focusing (IEF) according to their isoelectric point. In the second dimension proteins are separated according to their electrophoretic mobility by conventional SDS-PAGE. For IEF two different techniques, immobilized pH gradient (IPG) and carrier-ampholyte-based IEF (CA-based IEF), respectively, are currently applied. With a resolution of up to 10,000 protein spots in one gel, 2DE offers a huge potential to give a comprehensive overview of the proteins present in the examined system. In combination with image analysis and mass spectrometry 2DE is still the method of choice to analyse complex protein samples.

In this chapter we provide detailed protocols for both 2DE systems and give an overview about the latest developments including the two-dimensional difference gel electrophoresis (DIGE) system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., et al (1996) Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13, 19–50.

    PubMed  CAS  Google Scholar 

  2. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  3. Lohaus, C., Nolte, A., Bluggel, M., Scheer, C., Klose, J., Gobom, J., et al (2007) Multidimensional chromatography: A powerful tool for the analysis of membrane proteins in mouse brain. J Proteome Res 6, 105–113.

    Article  PubMed  CAS  Google Scholar 

  4. Washburn, M. P., Wolters, D., and Yates, J. R., III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  5. Schmidt, A., Kellermann, J., and Lottspeich, F. (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5, 4–15.

    Article  PubMed  CAS  Google Scholar 

  6. Lücking, A. and Cahill, D. J. (2006) Protein biochips in the proteomics field. In Proteomics in Drug Research. Methods and Principles in Medicinal Chemistry, (Hamacher, M., Marcus, K., Stühler, K., van Hall, A., Warscheid, B., and Meyer, H.E., eds.), Wiley-VCH, Weinheim, pp. 137–158.

    Google Scholar 

  7. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243.

    PubMed  CAS  Google Scholar 

  8. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–4021.

    PubMed  Google Scholar 

  9. Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Gorg, A., Westermeier, R., et al (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6, 317–339.

    Article  PubMed  CAS  Google Scholar 

  10. Görg, A., Postel W., Günther S., and Weser J., (1985) Improved horizontal two-dimensional electrophoresis with hybrid isoelectric focusing in immobilized pH gradients in the first dimension and laying-on transfer to the second dimension. Electrophoresis 6, 599–604.

    Article  Google Scholar 

  11. Gorg, A., Postel, W., and Gunther, S. (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 531–546.

    Article  PubMed  CAS  Google Scholar 

  12. Castellanos-Serra, L., and Hardy, E. (2001) Detection of biomolecules in electrophoresis gels with salts of imidazole and zinc II: a decade of research. Electrophoresis 22, 864–873.

    Article  PubMed  CAS  Google Scholar 

  13. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.

    Article  PubMed  CAS  Google Scholar 

  14. Neuhoff, V., Stamm, R., Pardowitz, I., Arold, N., Ehrhardt, W., and Taube, D. (1990) Essential problems in quantification of proteins following colloidal staining with coomassie brilliant blue dyes in polyacrylamide gels, and their solution. Electrophoresis 11, 101–117.

    Article  PubMed  CAS  Google Scholar 

  15. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

  16. Heukeshoven, J., and Dernick, R. (1988) Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis 9, 28–32.

    Article  PubMed  CAS  Google Scholar 

  17. Lamanda, A., Zahn, A., Roder, D., and Langen, H. (2004) Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. Proteomics 4, 599–608.

    Article  PubMed  CAS  Google Scholar 

  18. Rabilloud, T., Strub, J. M., Luche, S., van Dorsselaer, A., and Lunardi, J. (2001) A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1, 699–704.

    Article  PubMed  CAS  Google Scholar 

  19. Johnston, R. F., Pickett, S. C., and Barker, D. L. (1990) Autoradiography using storage phosphor technology. Electrophoresis 11, 355–360.

    Article  PubMed  CAS  Google Scholar 

  20. Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377–396.

    Article  PubMed  CAS  Google Scholar 

  21. Shaw, J., Rowlinson, R., Nickson, J., Stone, T., Sweet, A., Williams, K., et al (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3, 1181–1195.

    Article  PubMed  CAS  Google Scholar 

  22. Unlu, M., Morgan, M. E., and Minden, J. S. (1997) Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  23. Sitek, B., Luttges, J., Marcus, K., Kloppel, G., Schmiegel, W., Meyer, H. E., et al (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5, 2665–2679.

    Article  PubMed  CAS  Google Scholar 

  24. Helling, S., Schmitt, E., Joppich, C., Schulenborg, T., Mullner, S., Felske-Muller, S., et al (2006) 2-D differential membrane proteome analysis of scarce protein samples. Proteomics 6, 4506–4513.

    Article  PubMed  CAS  Google Scholar 

  25. Sitek, B., Scheibe, B., Jung, K., Schramm, A., and Stühler, K. (2006), Difference gel electrophoresis (DIGE): The next generation of two-dimensional gel electrophoresis for clinical research. In Proteomics in Drug Research. Methods and Principles in Medicinal Chemistry, (Hamacher, M., Marcus, K., Stühler, K., van Hall, A., Warscheid, B., and Meyer, H.E., eds.), Wiley-VCH, Weinheim, pp. 33–55.

    Google Scholar 

  26. Wilson, K. E., Marouga, R., Prime, J. E., Pashby, D. P., Orange, P. R., Crosier, S., et al (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5, 3851–3858.

    Article  PubMed  CAS  Google Scholar 

  27. Greengauz-Roberts, O., Stoppler, H., Nomura, S., Yamaguchi, H., Goldenring, J. R., Podolsky, R. H., et al (2005) Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics 5, 1746–1757.

    Article  PubMed  CAS  Google Scholar 

  28. Fujii, K., Kondo, T., Yokoo, H., Okano, T., Yamada, M., Yamada, T., et al (2006) Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye. Proteomics 6, 1640–1653.

    Article  PubMed  CAS  Google Scholar 

  29. Klose, J. (1999) Large-gel 2-D electrophoresis. In 2-D Proteome Analysis Protocols (A.J. Link ed.), Humana Press, NJ, pp. 147–172

    Google Scholar 

  30. Görg, A. (1999) IPG-Dalt of very alkaline proteins. In 2-D Proteome Analysis Protocols (A.J. Link ed.), Humana Press, Totowa New Jersey, 197–209

    Google Scholar 

  31. Görg, A., and Weiss, W. (1999) Analytical IPG-Dalt. In 2-D Proteome Analysis Protocols (A.J. Link ed.), Humana Press, NJ, pp. 189–195

    Google Scholar 

  32. Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.

    Article  PubMed  Google Scholar 

  33. Görg, A., Boguth, G., Obermaier, C., Posch, A., and Weiss, W. (1995) Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16, 1079–1086.

    Article  PubMed  Google Scholar 

  34. Klose, J., and Kobalz, U. (1995) Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034–1059.

    Article  PubMed  CAS  Google Scholar 

  35. Stuhler, K., Pfeiffer, K., Joppich, C., Stephan, C., Jung, K., Muller, M., et al (2006) Pilot study of the Human Proteome Organisation Brain Proteome Project: applying different 2-DE techniques to monitor proteomic changes during murine brain development. Proteomics 6, 4899–4913.

    Article  PubMed  Google Scholar 

  36. Lilley, K. S., Razzaq, A., and Dupree, P. (2002) Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol 6, 46–50.

    Article  PubMed  CAS  Google Scholar 

  37. Gorg, A., Weiss, W., and Dunn, M. J. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685.

    Article  PubMed  Google Scholar 

  38. Stasyk, T., and Huber, L. A. (2004) Zooming in: fractionation strategies in proteomics. Proteomics 4, 3704–3716.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, H., and Hanash, S. (2005) Intact-protein based sample preparation strategies for proteome analysis in combination with mass spectrometry. Mass Spectrom Rev 24, 413–426.

    Article  PubMed  CAS  Google Scholar 

  40. Bodzon-Kulakowska, A., Bierczynska-Krzysik, A., Dylag, T., Drabik, A., Suder, P., Noga, M., et al (2007) Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 849, 1–31.

    Article  PubMed  CAS  Google Scholar 

  41. Gianazza, E. (1999) Casting immobilized pH gradients (IPGs). In 2-D Proteome Analysis Protocols (A.J. Link ed.), Humana Press, NJ, pp. 175–188.

    Google Scholar 

  42. Marcus, K., and Meyer, H. E. (2004) Two-dimensional polyacrylamide gel electrophoresis for platelet proteomics. Methods Mol Biol 273, 421–434.

    PubMed  CAS  Google Scholar 

  43. Sanchez, J. C., Hochstrasser, D., and Rabilloud, T. (1999) In-gel sample rehydration of immobilized pH gradient. In 2-D Proteome Analysis Protocols (A.J. Link ed.), Humana Press, NJ, pp. 221–225.

    Google Scholar 

  44. Sanchez, J. C., Rouge, V., Pisteur, M., Ravier, F., Tonella, L., Moosmayer, M., et al (1997) Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18, 324–327.

    Article  PubMed  CAS  Google Scholar 

  45. Marcus, K., Moebius, J., and Meyer, H. E. (2003) Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal Bioanal Chem 376, 973–993.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Bundesministerium fĂĽr Bildung und Forschung (NGFN, FZ 031U119 and 01GR0440) and the Ministerium fĂĽr Wissenschaft und Forschung Nordrhein Westfalen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Marcus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marcus, K. et al. (2009). High-Resolution 2DE. In: Tyther, R., Sheehan, D. (eds) Two-Dimensional Electrophoresis Protocols. Methods in Molecular Biology, vol 519. Humana Press. https://doi.org/10.1007/978-1-59745-281-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-281-6_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-937-6

  • Online ISBN: 978-1-59745-281-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics