Skip to main content

Cellular and Morpho-histological Foundations of In Vitro Plant Regeneration

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

Abstract

In vitro plant regeneration systems have turned into invaluable tools to plant biotechnology. Despite being poorly understood, the molecular mechanisms underlying the control of both morphogenetic pathways, de novo organogenesis and somatic embryogenesis, have been supported by recent findings involving proteome-, metabolome-, and transcriptome-based profiles. Notwithstanding, the integration of molecular data with structural aspects has been an important strategy of study attempting to elucidate the basis of the cell competence acquisition to further follow commitment and determination to specific a particular in vitro regeneration pathway. In that sense, morpho-histological tools have allowed to recognize cellular markers and patterns of gene expression at cellular level and this way have collaborated in the identification of the cell types with high regenerative capacity. This chapter ties together up those fundamental and important microscopy techniques that help to elucidate that regeneration occurs, most of the time, from epidermis or subepidermal cells and from the procambial cells (pericycle and vascular parenchyma). Important findings are discussed toward ultrastructural differences observed in the nuclear organization among pluripotent and totipotent cells, implying that regeneration occurs from two cellular mechanisms based on cellular reprogramming or reactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sugimoto K (2015) Plant cell reprogramming as an adaptive strategy. J Plant Res 128:345–347. https://doi.org/10.1007/s10265-015-0718-7

    Article  PubMed  Google Scholar 

  2. Jamsheed S, Rasool S, Koul S et al (2013) Crop improvement through plant tissue culture. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, Boston, pp 123–148. https://doi.org/10.1007/978-1-4614-7028-1_3

    Chapter  Google Scholar 

  3. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130

    PubMed  CAS  Google Scholar 

  4. Ikeda-Iwai M, Satoh S, Kamada H (2002) Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53:1575–1580. https://doi.org/10.1093/jxb/erf006

    Article  PubMed  CAS  Google Scholar 

  5. Su YH, Zhao XY, Liu YB et al (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gliwicka M, Nowak K, Balazadeh S et al (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS One 8:e69261. https://doi.org/10.1371/journal.pone.0069261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rocha DI, Kurczynska E, Potocka I et al (2016) Histology and histochemistry of somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Cham, pp 471–494. https://doi.org/10.1007/978-3-319-33705-0_26

    Chapter  Google Scholar 

  8. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57. https://doi.org/10.1080/07352680903436291

    Article  CAS  Google Scholar 

  9. Duclercq J, Sangwan-Norreel B, Catterou M et al (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606. https://doi.org/10.1016/j.tplants.2011.08.004

    Article  PubMed  CAS  Google Scholar 

  10. Karami O, Aghavaisi B, Mahmoudi Pour A (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190. https://doi.org/10.1007/s12154-009-0028-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Oliveira EJ, Koehler AD, Rocha DI et al (2017) Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon. Protoplasma 254(5):2017–2034. https://doi.org/10.1007/s00709-017-1089-9

    Article  CAS  PubMed  Google Scholar 

  12. Rocha DI, Monte-Bello CC, Aizza LCB et al (2016) A passion fruit putative ortholog of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed throughout the in vitro de novo shoot organogenesis developmental program. Plant Cell Tissue Org 125:107–117. https://doi.org/10.1007/s11240-015-0933-x

    Article  CAS  Google Scholar 

  13. Thompson DS (2007) Space and time in the plant cell wall: relationships between cell type, cell wall rheology and cell function. Ann Bot 101:203–211. https://doi.org/10.1093/aob/mcm138

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523. https://doi.org/10.1242/dev.020867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Verdeil JL, Alemanno L, Niememack N et al (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252. https://doi.org/10.1016/j.tplants.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  16. Rocha DI, Monte-Bello CC, Dornelas MC (2015) Alternative induction of de novo shoot organogenesis or somatic embryogenesis from in vitro cultures of mature zygotic embryos of passion fruit (Passiflora edulis Sims) is modulated by the ratio between auxin and cytokinin in the medium. Plant Cell Tissue Org 120:1087–1098. https://doi.org/10.1007/s11240-014-0663-5

    Article  CAS  Google Scholar 

  17. Hartmann HT, Kester DE, Davies FT Jr et al (2010) Hartmann & Kester's plant propagation: principles and practices. Pearson, New Jersey

    Google Scholar 

  18. Malik M, Wang F, Dirpaul J et al (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154. https://doi.org/10.1104/pp.106.092932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Maraschin SF, de Priester W, Spaink HP et al (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726. https://doi.org/10.1093/jxb/eri190

    Article  PubMed  CAS  Google Scholar 

  20. Germanà MA (2003) Somatic embryogenesis and plant regeneration from anther culture of Citrus aurantium and C. reticulata. Biologia 58:843–850

    Google Scholar 

  21. Paiva Neto VB, Botelho MN, Aguiar R et al (2009) Somatic embryogenesis from immature zygotic embryos of annato (Bixa orellana L.). In Vitro Cell Dev Pl 39:629–634. https://doi.org/10.1079/IVP2003465

    Article  Google Scholar 

  22. Elhiti M, Stasolla C (2011) The use of zygotic embryos as axplants for in vitro propagation: an overview. Methods Mol Biol 710:229–255. https://doi.org/10.1007/978-1-61737-988-8_17

    Article  PubMed  CAS  Google Scholar 

  23. Delporte F, Pretova A, du Jardin P et al (2014) Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma 251:1455–1470. https://doi.org/10.1007/s00709-014-0647-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vasil IK (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26:1133–1154. https://doi.org/10.1007/s00299-007-0338-3

    Article  PubMed  CAS  Google Scholar 

  25. Ikeuchi M, Ogawa Y, Iwase A et al (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451. https://doi.org/10.1242/dev.134668

    Article  PubMed  CAS  Google Scholar 

  26. de Almeida M, de Almeida CV, Graner EM et al (2012) Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31:1495–1515. https://doi.org/10.1007/s00299-012-1264-6

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt EDL, Guzzo F, Toonen MAJ et al (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  28. Somleva MN, Schmidt EDL, De Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726. https://doi.org/10.1007/s002999900169

    Article  CAS  PubMed  Google Scholar 

  29. Yumbla-Orbes M, Cruz ACF, Pinheiro MVM et al (2017) Somatic embryogenesis and de novo shoot organogenesis can be alternatively induced by reactivating pericycle cells in Lisianthus (Eustoma grandiflorum (Raf.) Shinners) root explants. In Vitro Cell Dev Pl 53:209–218. https://doi.org/10.1007/s11627-017-9800-2

  30. Canhoto JM, Mesquita JF, Cruz GS (1996) Ultrastructural changes in cotyledons of pineapple guava (Myrtaceae) during somatic embryogenesis. Ann Bot 78:513–521. https://doi.org/10.1006/anbo.1996.0149

    Article  Google Scholar 

  31. Moura E, Ventrella M, Motoike S et al (2008) Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Plant Cell Tissue Org 95:175–184. https://doi.org/10.1007/s11240-008-9430-9

    Article  Google Scholar 

  32. Rodriguez AP, Wetzstein HY (1998) A morphological and histological comparison of the initiation and development of pecan (Carya illinoinensis) somatic embryogenic cultures induced with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid. Protoplasma 204:71–83. https://doi.org/10.1007/BF01282295

    Article  Google Scholar 

  33. Rocha DI, Vieira LM, Tanaka FAO et al (2012) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma 249:747–758. https://doi.org/10.1007/s00709-011-0318-x

    Article  PubMed  Google Scholar 

  34. De Smet I, Vanneste S, Inzé D et al (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887. https://doi.org/10.1007/s11103-005-4547-2

    Article  PubMed  CAS  Google Scholar 

  35. Evert RF (2006) Esau's plant anatomy, meristems, cells, and tissues of the plant body: their structure, function, and development. Johm Wiley & Sons, New Jersey

    Book  Google Scholar 

  36. Cruz ACF, Rocha DI, Iarema L et al (2014) In vitro organogenesis from root culture segments of Bixa orellana L. (Bixaceae). In Vitro Cell Dev Pl 50:76–83. https://doi.org/10.1007/s11627-013-9580-2

  37. Vieira LM, Rocha DI, Taquetti MF et al (2014) In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): the influence of explant type, growth regulators, and incubation conditions. In Vitro Cell Dev Pl 50:738–745. https://doi.org/10.1007/s11627-014-9650-0

    Article  CAS  Google Scholar 

  38. Lombardi SP, Passos IRS, Nogueira MCS et al (2007) In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata Mast. Braz Arch Biol Technol 50:239–247. https://doi.org/10.1590/S1516-89132007000200009

    Article  Google Scholar 

  39. Vinocur B, Carmi T, Altman A et al (2000) Enhanced bud regeneration in aspen (Populus tremula L.) roots cultured in liquid media. Plant Cell Rep 19:1146–1154. https://doi.org/10.1007/s002990000243

    Article  CAS  PubMed  Google Scholar 

  40. Atta R, Laurens L, Boucheron-Dubuisson E et al (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644. https://doi.org/10.1111/j.1365-313X.2008.03715.x

    Article  PubMed  CAS  Google Scholar 

  41. Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471. https://doi.org/10.1016/j.devcel.2010.02.004

    Article  PubMed  CAS  Google Scholar 

  42. Pulianmackal AJ, Kareem AV, Durgaprasad K et al (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:142. https://doi.org/10.3389/fpls.2014.00142

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kurczynska E, Gaj M, Ujczak A et al (2007) Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226:619–628. https://doi.org/10.1007/s00425-007-0510-6

    Article  PubMed  CAS  Google Scholar 

  44. Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org 74:201–228. https://doi.org/10.1023/A:1024033216561

    Article  Google Scholar 

  45. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173. https://doi.org/10.1105/tpc.113.116053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. de Figueiredo Carvalho MA, Paiva R, Alves E et al (2013) Morphogenetic potential of native passion fruit (Passiflora gibertii N. E. Brown.) calli. Braz J Bot 36:141–151

    Article  Google Scholar 

  47. Jiménez VM, Bangerth F (2001) Endogenous hormone levels in initial explants and in embryogenic and nonembryogenic callus cultures of competent and non-competent wheat genotypes. Plant Cell Tissue Org 67:37–46. https://doi.org/10.1023/A:1011671310451

    Article  Google Scholar 

  48. Kurczynska EU, Potocka I, Dobrowolska I et al (2012) Cellular markers for somatic embryogenesis. In: Sato K (ed) Embryogenesis. InTech, Rijeka, Croatia, pp 307–332

    Google Scholar 

  49. Rocha DI, Pinto DLP, Vieira LM et al (2016) Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression. Protoplasma 253:595–609. https://doi.org/10.1007/s00709-015-0837-y

    Article  CAS  PubMed  Google Scholar 

  50. de Almeida M, Graner ÉM, Brondani GE et al (2015) Plant morphogenesis: theorical bases. Adv Sci 2:13–22

    Google Scholar 

  51. Cangahuala-Inocente GC, Steiner N, Santos M et al (2004) Morphohistological analysis and histochemistry of Feijoa sellowiana somatic embryogenesis. Protoplasma 224:33–40. https://doi.org/10.1007/s00709-004-0055-5

    Article  PubMed  CAS  Google Scholar 

  52. Etienne H, Bertrand B, Georget F et al (2013) Development of coffee somatic and zygotic embryos to plants differs in the morphological, histochemical and hydration aspects. Tree Physiol 33:640–653. https://doi.org/10.1093/treephys/tpt034

    Article  PubMed  CAS  Google Scholar 

  53. Moura EF, Ventrella MC, Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Sci Agric 67:399–407. https://doi.org/10.1590/S0103-90162010000400004

    Article  Google Scholar 

  54. Paim Pinto DL, Barros BA, Viccini L et al (2010) Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry. Plant Cell Tissue Org 103:71–79. https://doi.org/10.1007/s11240-010-9756-y

    Article  Google Scholar 

  55. Silva GM, Cruz ACF, Otoni WC et al (2015) Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae). In Vitro Cell Dev Pl 51:539–545. https://doi.org/10.1007/s11627-015-9699-4

  56. Ventrella MC, Almeida AL, Araújo LN et al (2013) Histochemical methods applied to seeds. UFV Publisher, Viçosa

    Google Scholar 

  57. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, Oxford

    Google Scholar 

  58. Martin AB, Cuadrado Y, Guerra H et al (2000) Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Sci 154:143–151

    Article  CAS  PubMed  Google Scholar 

  59. Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R et al (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149. https://doi.org/10.1007/s00299-002-0464-x

    Article  CAS  Google Scholar 

  60. Verdeil JL, Hocher V, Huet C et al (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18. https://doi.org/10.1006/anbo.2001.1408

    Article  Google Scholar 

  61. Pinto G, Silva S, Neves L et al (2010) Histocytological changes and reserve accumulation during somatic embryogenesis in Eucalyptus globulus. Trees 24:763–769. https://doi.org/10.1007/s00468-010-0446-5

    Article  Google Scholar 

  62. Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223. https://doi.org/10.1590/S0103-31312001000200008

    Article  Google Scholar 

  63. Vidal BC (1970) Dichroism in collagen bundles stained with Xylidine-Ponceau 2R. Ann Histochim 15:289–296

    Google Scholar 

  64. Durzan DJ (1988) Somatic polyembryogenesis for the multiplication of tree crops. Biotechnol Genet Eng Rev 6:341–378. https://doi.org/10.1080/02648725.1988.10647852

    Article  Google Scholar 

  65. Guerra MP, Steiner N, Farias-Soares FL et al (2016) Somatic embryogenesis in Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, pp 439–450. https://doi.org/10.1007/978-1-4939-3061-6_24

    Chapter  Google Scholar 

  66. Silva ML, Paim Pinto DL, Guerra MP et al (2009) A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos. Plant Cell Tissue Org 99:47–54. https://doi.org/10.1007/s11240-009-9574-2

  67. Steiner N, Farias-Soares FL, Schmidt ÉC et al (2016) Toward establishing a morphological and ultrastructural characterization of proembryogenic masses and early somatic embryos of Araucaria angustifolia (Bert.) O. Kuntze. Protoplasma 253:487–501. https://doi.org/10.1007/s00709-015-0827-0

    Article  PubMed  CAS  Google Scholar 

  68. Steiner N, Vieira FN, Maldonado S et al (2005) Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Braz Arch Biol Technol 48:895–903. https://doi.org/10.1590/S1516-89132005000800005

    Article  CAS  Google Scholar 

  69. Pilarska M, Malec P, Salaj J et al (2016) High expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens. Protoplasma 253:345–355. https://doi.org/10.1007/s00709-015-0814-5

    Article  PubMed  CAS  Google Scholar 

  70. Savona M, Mattioli R, Nigro S et al (2012) Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. J Exp Bot 63:471–488. https://doi.org/10.1093/jxb/err295

    Article  CAS  PubMed  Google Scholar 

  71. Brown C (1998) In situ hybridization with riboprobes: an overview for veterinary pathologists. Vet Pathol 35:159–167

    Article  CAS  PubMed  Google Scholar 

  72. Dusi DMA (2015) Hibridização in situ para detecção da expressão de genes em tecidos vegetais. In: Brasileiro ACM, Carneiro VCC (eds) Manual de transformação genética de plantas. Embrapa Publisher, Brasília, pp 303–327

    Google Scholar 

  73. Haberlandt G (1902) Kulturversuche mit isolierten pflanzenzellen. Sber Akad Wiss Wein 111:69–92

    Google Scholar 

  74. Waris H (1957) A striking morphogenetic effect of amino acid in seed plant. Suom Kemistil 30B:121

    Google Scholar 

  75. Matos EM, Koehler AD, Faria DV et al (2016) Somatic embryogenesis in annatto (Bixa orellana L.). In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 213–231. https://doi.org/10.1007/978-3-319-33705-0_13

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Belo Horizonte, MG, Brazil). Authors are grateful to the following colleagues who generously made available some figures used in this chapter: Dr. Wellington M. Barbosa (Fig. 1b), Dr. Maria Yumbla-Orbes (Figs. 1h and 4g–i), Dr. Elyabe M. Matos (Fig.4e, f), and MSc Ludmila N. F. Correia (Fig. 1g). The Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Agricultura (NAP/MEPA-ESALQ/USP, Piracicaba, SP, Brazil) and Núcleo de Microscopia e Microanálises (NMM/UFV ,Viçosa, MG, Brazil) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Campos Otoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rocha, D.I., Vieira, L.M., Koehler, A.D., Otoni, W.C. (2018). Cellular and Morpho-histological Foundations of In Vitro Plant Regeneration. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics