Skip to main content

Differential Equations Models to Study Quorum Sensing

  • Protocol
  • First Online:
Quorum Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1673))

Abstract

Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

Deceased February 28th, 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James S, Nilsson P, James G, Kjelleberg S, Fagerström T (2000) Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation. J Mol Biol 296:1127–1137

    Article  CAS  PubMed  Google Scholar 

  2. Nilsson P, Olofsson A, Fagerlind M, Fagerström T, Rice S, Kjelleberg S et al (2001) Kinetics of the ahl regulatory system in a model biofilm system: how many bacteria constitute a “quorum”? J Mol Biol 309:631–640

    Article  CAS  PubMed  Google Scholar 

  3. Dockery J, Keener J (2001) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 63:95–116

    Article  CAS  PubMed  Google Scholar 

  4. Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2001) Mathematical modelling of quorum sensing in bacteria. Math Med Biol 18:263–292

    Article  CAS  Google Scholar 

  5. Kuttler C, Hense BA (2008) Interplay of two quorum sensing regulation systems of Vibrio fischeri. J Theor Biol 251:167–180

    Article  PubMed  Google Scholar 

  6. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K et al (2010) Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol 72:22–34

    Article  CAS  PubMed  Google Scholar 

  7. Pérez-Velázquez J, Gölgeli M, García-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78:1585–1639

    Article  PubMed  Google Scholar 

  8. Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2004) Cell-signalling repression in bacterial quorum sensing. Math Med Biol 21:169–204

    Article  CAS  PubMed  Google Scholar 

  9. Müller J, Kuttler C, Hense BA, Rothballer M, Hartmann A (2006) Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53:672–702

    Article  PubMed  Google Scholar 

  10. Lupp C, Urbanowski M, Greenberg EP, Ruby EG (2003) The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol Microbiol 50:319–331

    Article  CAS  PubMed  Google Scholar 

  11. Kuo A, Callahan SM, Dunlap PV (1996) Modulation of luminescence operon expression by N-octanoyl-L-homoserine lactone in ainS mutants of Vibrio fischeri. J Bacteriol 178:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buddrus-Schiemann K, Rieger M, Mühlbauer M, Barbarossa MV, Kuttler C, Hense BA et al (2014) Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models. Anal Bioanal Chem 25:6373–6383

    Article  Google Scholar 

  13. Koerber AJ, King JR, Ward JP, Williams P, Croft JM, Sockett RE (2002) A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull Math Biol 64:239–259

    Article  CAS  PubMed  Google Scholar 

  14. Hense BA, Müller J, Kuttler C, Hartmann A (2012) Spatial heterogeneity of autoinducer regulation systems. Sensors 12:4156–4171

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fujimoto K, Sawai S (2013) A design principle of group-level decision making in cell populations. PLoS Comput Biol 9:1–13

    Article  Google Scholar 

  16. Brown (2013) Linking molecular and population processes in mathematical models of quorum sensing. Bull Math Biol 75:1813–1839

    Article  PubMed  Google Scholar 

  17. Hense BA, Schuster M (2015) Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev 79:153–169

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Pérez-Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pérez-Velázquez, J., Hense, B.A. (2018). Differential Equations Models to Study Quorum Sensing. In: Leoni, L., Rampioni, G. (eds) Quorum Sensing. Methods in Molecular Biology, vol 1673. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7309-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7309-5_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7308-8

  • Online ISBN: 978-1-4939-7309-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics