Skip to main content
Log in

Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this interdisciplinary approach, the dynamics of production and degradation of the quorum sensing signal 3-oxo-decanoylhomoserine lactone were studied for continuous cultures of Pseudomonas putida IsoF. The signal concentrations were quantified over time by use of monoclonal antibodies and ELISA. The results were verified by use of ultra-high-performance liquid chromatography. By use of a mathematical model we derived quantitative values for non-induced and induced signal production rate per cell. It is worthy of note that we found rather constant values for different rates of dilution in the chemostat, and the values seemed close to those reported for batch cultures. Thus, the quorum-sensing system in P. putida IsoF is remarkably stable under different environmental conditions. In all chemostat experiments, the signal concentration decreased strongly after a peak, because emerging lactonase activity led to a lower concentration under steady-state conditions. This lactonase activity probably is quorum sensing-regulated. The potential ecological implication of such unique regulation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275

    CAS  Google Scholar 

  2. Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38(6):704–713. doi:10.1007/s10886-012-0141-7

    Article  CAS  Google Scholar 

  3. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who's talking: communication and quorum sensing in the bacterial world. Phil Trans R Soc B Biol Sci 362(1483):1119–1134. doi:10.1098/rstb.2007.2039

    Article  CAS  Google Scholar 

  4. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147(Pt 9):2517–2528

    CAS  Google Scholar 

  5. Koiv V, Mae A (2001) Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp. carotovora. Mol Gen Genomics 265(2):287–292. doi:10.1007/s004380000413

    Article  CAS  Google Scholar 

  6. Shih P-C, Huang C-T (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49(2):309–314. doi:10.1093/jac/49.2.309

    Article  CAS  Google Scholar 

  7. Yazgan A, Özcengiz G, Marahiel MA (2001) Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin. Biochim Biophys (BBA) Gene Struct Expr 1518(1–2):87–94. doi:10.1016/S0167-4781(01)00182-8

    Article  CAS  Google Scholar 

  8. Sokol PA, Malott RJ, Riedel K, Eberl L (2007) Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs. Future Microbiol 2(5):555–563. doi:10.2217/17460913.2.5.555

    Article  CAS  Google Scholar 

  9. Cooley M, Chhabra SR, Williams P (2008) N-acylhomoserine lactone-mediated quorum sensing: a twist in the tail and a blow for host immunity. Chem Biol 15(11):1141–1147. doi:10.1016/j.chembiol.2008.10.010

    Article  CAS  Google Scholar 

  10. Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68(12):6371–6382. doi:10.1128/aem.68.12.6371-6382.2002

    Article  CAS  Google Scholar 

  11. Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67(12):5761–5770

    Article  CAS  Google Scholar 

  12. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol 72(1):22–34. doi:10.1111/j.1574-6941.2009.00828.x

    Article  CAS  Google Scholar 

  13. Krysciak D, Schmeisser C, Preuß S, Riethausen J, Quitschau M, Grond S, Streit WR (2011) Involvement of multiple loci in quorum quenching of Autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl Environ Microbiol 77(15):5089–5099. doi:10.1128/aem.00112-11

    Article  CAS  Google Scholar 

  14. Uroz S, Oger PM, Chapelle E, Adeline M-T, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74(5):1357–1366. doi:10.1128/aem.02014-07

    Article  CAS  Google Scholar 

  15. Wahjudi M, Papaioannou E, Hendrawati O, van Assen AHG, van Merkerk R, Cool RH, Poelarends GJ, Quax WJ (2011) PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology 157(7):2042–2055. doi:10.1099/mic.0.043935-0

    Article  CAS  Google Scholar 

  16. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70(10):5635–5646. doi:10.1128/iai.70.10.5635-5646.2002

    Article  CAS  Google Scholar 

  17. Dunlap PV (1999) Quorum regulation of luminescence in Vibrio fischeri. J Mol Microbiol Biotechnol 1(1):5–12

    CAS  Google Scholar 

  18. De Lay N, Gottesman S (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191(2):461–476. doi:10.1128/jb.01157-08

    Article  Google Scholar 

  19. Mellbye B, Schuster M (2014) Physiological framework for the regulation of quorum sensing-dependent public goods in pseudomonas aeruginosa. J Bacteriol 196(6):1155–1164

    Article  Google Scholar 

  20. Fekete A, Frommberger M, Rothballer M, Li X, Englmann M, Fekete J, Hartmann A, Eberl L, Schmitt-Kopplin P (2007) Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Anal Bioanal Chem 387(2):455–467. doi:10.1007/s00216-006-0970-8

    Article  CAS  Google Scholar 

  21. Li X, Fekete A, Englmann M, Götz C, Rothballer M, Frommberger M, Buddrus K, Fekete J, Cai C, Schröder P, Hartmann A, Chen G, Schmitt-Kopplin P (2006) Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. J Chromatogr A 1134(1–2):186–193. doi:10.1016/j.chroma.2006.09.047

    Article  CAS  Google Scholar 

  22. Chen X, Buddrus-Schiemann K, Rothballer M, Krämer P, Hartmann A (2010) Detection of quorum sensing molecules in Burkholderia cepacia culture supernatants with enzyme-linked immunosorbent assays. Anal Bioanal Chem 398(6):2669–2676. doi:10.1007/s00216-010-4045-5

    Article  CAS  Google Scholar 

  23. Chen X, Kremmer E, Gouzy M-F, Clausen E, Starke M, Wöllner K, Pfister G, Hartmann A, Krämer P (2010) Development and characterization of rat monoclonal antibodies for N-acylated homoserine lactones. Anal Bioanal Chem 398(6):2655–2667. doi:10.1007/s00216-010-4017-9

    Article  CAS  Google Scholar 

  24. Barbarossa MV, Kuttler C, Fekete A, Rothballer M (2010) A delay model for quorum sensing of Pseudomonas putida. Biosystems 102(2–3):148–156

    Article  CAS  Google Scholar 

  25. Clark DJ, Maaløe O (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112

    Article  CAS  Google Scholar 

  26. Englmann M, Fekete A, Kuttler C, Frommberger M, Li X, Gebefügi I, Fekete J, Schmitt-Kopplin P (2007) The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites: analytical approaches using ultra performance liquid chromatography. J Chromatogr A 1160(1–2):184–193

    Article  CAS  Google Scholar 

  27. Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, Hartmann A (2010) Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb Ecol 60(2):381–393

    Article  Google Scholar 

  28. Wöllner K, Chen X, Kremmer E, Krämer PM (2010) Comparative surface plasmon resonance and enzyme-linked immunosorbent assay characterisation of a monoclonal antibody with N-acyl homoserine lactones. Anal Chim Acta 683(1):113–118

    Article  Google Scholar 

  29. Sha Y, Deng C, Liu B (2008) Development of C-18-functionalized magnetic silica nanoparticles as sample preparation technique for the determination of ergosterol in cigarettes by microwave-assisted derivatization and gas chromatography/mass spectrometry. J Chromatogr A 1198:27–33. doi:10.1016/j.chroma.2008.05.049

    Article  Google Scholar 

  30. Aguilar-Arteaga K, Rodriguez JA, Barrado E (2010) Magnetic solids in analytical chemistry: a review. Anal Chim Acta 674(2):157–165. doi:10.1016/j.aca.2010.06.043

    Article  CAS  Google Scholar 

  31. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44(18):2782–2785. doi:10.1002/anie.200462551

    Article  CAS  Google Scholar 

  32. Smith HL, Waltman P (1995) The theory of the chemostat: dynamics of microbial competition. Cambridge University Press, New York

    Book  Google Scholar 

  33. Brady JF (1995) In: Karu A, Nelson J, Wong R (eds) Immunoanalysis of agrochemicals: emerging technologies. American Chemical Society, Washington, pp 266–287

    Chapter  Google Scholar 

  34. Meyer A, Megerle JA, Kuttler C, Mueller J, Aguilar C, Eberl L, Hense BA, Raedler JO (2012) Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Phys Biol 9(2). doi:10.1088/1478-3975/9/2/026007

  35. Adar YY, Simaan M, Ulitzur S (1992) Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins. J Bacteriol 174(22):7138–7143

    CAS  Google Scholar 

  36. Ulitzur S (1989) The regulatory control of the bacterial luminescence system–a new view. J Biolumin Chemilumin 4(1):317–325. doi:10.1002/bio.1170040144

    Article  CAS  Google Scholar 

  37. Rampioni G, Bertani I, Pillai CR, Venturi V, Zennaro E, Leoni L (2012) Functional characterization of the quorum sensing regulator RsaL in the plant-beneficial strain Pseudomonas putida WCS358. Appl Environ Microbiol 78(3):726–734. doi:10.1128/aem.06442-11

    Article  CAS  Google Scholar 

  38. Gupta R, Schuster M (2013) Negative regulation of bacterial quorum sensing tunes public goods cooperation. ISME J 7(11):2159–2168. doi:10.1038/ismej.2013.109

    Article  CAS  Google Scholar 

  39. Kuttler C, Hense BA (2010) Finetuning for the mathematical modelling of quorum sensing regulation systems. Int J Biomath Biostat 1:151–168

    Google Scholar 

  40. Zhang H-B, Wang L-H, Zhang L-H (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci 99(7):4638–4643. doi:10.1073/pnas.022056699

    Article  CAS  Google Scholar 

  41. Chen CC, Riadi L, Suh SJ, Ohman DE, Ju LK (2005) Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J Biotechnol 117(1):1–10. doi:10.1016/j.jbiotec.2005.01.003

    Article  CAS  Google Scholar 

  42. Henkel M, Schmidberger A, Kuehnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R (2013) Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 97(17):7607–7616. doi:10.1007/s00253-013-5024-5

    Article  CAS  Google Scholar 

  43. De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67(4):1865–1873. doi:10.1128/aem.67.4.1865-1873.2001

    Article  Google Scholar 

  44. Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33(1):152–163. doi:10.1111/j.1574-6976.2008.00148.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We enormously appreciated the great dedication to immunochemical analysis of AHL compounds of Dr Petra Krämer, who died unexpectedly in the early phase of these experiments. Furthermore we want to thank Dr Elisabeth Kremmer, Institute of Molecular Immunology, Helmholtz Zentrum München, for providing the monoclonal antibodies. Maria Vittoria Barbarossa was supported by ERC starting grant no. 259559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hartmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buddrus-Schiemann, K., Rieger, M., Mühlbauer, M. et al. Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models. Anal Bioanal Chem 406, 6373–6383 (2014). https://doi.org/10.1007/s00216-014-8063-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8063-6

Keywords

Navigation