Skip to main content
Log in

Cell–cell communication by quorum sensing and dimension-reduction

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Several bacterial taxa change their behavior if the population density exceeds a certain threshold. This phenomenon is the consequence of a communication system between the bacteria and is called quorum sensing (QS). Up to now, this phenomenon is mostly modeled at population level. However, new experimental techniques allow for single cell analysis. We introduce a modeling approach for the description of this QS system, including a discussion of the regulatory network and its bistable behavior. Based on this single-cell model we develop and analyze a spatially structured model for a cell population. Special attention is given to the scaling behavior w.r.t. the cell size (leading to an approximation theorem for stationary solutions) and its consequences for the interpretation of cell communication (QS versus diffusion sensing). Concluding, we apply the modeling approach to spatially structured experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R., Fournier J. (2003). Sobolev Spaces. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Bassler B. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2:582–587

    Article  Google Scholar 

  3. Daniels R., Vanderleyden J., Michiels J. (2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev. 28:261–289

    Article  Google Scholar 

  4. Dockery J., Keener J. (2001). A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 63:95–116

    Article  Google Scholar 

  5. Eberhard A., Burlingame A., Eberhard C., Kenyon G., Nealson K., Oppenheimer N. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  Google Scholar 

  6. Fuqua C., Greenberg P.E. (2002). Listening on bacteria: acyl-homoserine lactone signalling. Nat. Rev. 3:685–695

    Article  Google Scholar 

  7. Gantner, S.: Mikrobielle Ökologie N-Acyl-L-Homoserinlacton-produzierender Bakterien in der Rhizosphäre von Tomatenpflanzen. PhD Thesis, Ludwig-Maximilian-Universität München (2003)

  8. Gray K., Greenberg E. (1992). Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ. J. Bacteriol. 174:4384–4390

    Google Scholar 

  9. Kaplan H., Greenberg E. (1985). Diffusion of autoinducers is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163:1210–1214

    Google Scholar 

  10. Koerber A., King J., Williams P. (2005). Deterministic and stochastic modelling of endosome escape by Staphylococcus aureus: “quorum” sensing by a single bacterium. J. Math. Biol. 50:440–488

    Article  MATH  MathSciNet  Google Scholar 

  11. Kuo A., Blough N., Dunlap P. (1994). Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 176:7558–7565

    Google Scholar 

  12. Lupp C., Ruby E. (2004). Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J. Bacteriol. 186:3873–3881

    Article  Google Scholar 

  13. Lupp C., Ruby E. (2005). Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187:3620–3629

    Article  Google Scholar 

  14. Lupp C., Urbanowski M., Greenberg E., Ruby E. (2003). The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50:319–331

    Article  Google Scholar 

  15. Miller M., Bassler B. (2001). Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–199

    Article  Google Scholar 

  16. Nealson K., Platt T., Hastings J. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313–322

    Google Scholar 

  17. Ravn L., Christensen A., Molin S., Givskov M., Gram L. (2001). Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J. Microbiol. Methods 44:239–251

    Article  Google Scholar 

  18. Redfield R.J. (2002). Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365–370

    Article  Google Scholar 

  19. Renardy M., Rogers R.C. (1992). An Introduction to Partial Differential Equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Riedel K., Hentzer M., Geisenberger O., Huber B., Steidle A., Wu H., Hoiby N., Givskov M., Molin S., Eberl L. (2001). N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262

    Google Scholar 

  21. Ruby E., Lee K.-H. (1998). The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64(3):805–812

    Google Scholar 

  22. Schaefer A., Val B., Hanzelka B., Cronan J., Greenberg E. (2000). Detection, purification and structural elucidation of acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Method. Enzymol. 305:288–301

    Article  Google Scholar 

  23. Sharma A., Sahgal M., Johri B. (2003). Microbial communication in the rhizosphere: operation of quorum sensing. Curr. Sci. 85:1164–1172

    Google Scholar 

  24. Steidle A., Sigl K., Schuhegger R., Ihring A., Schmid M., Gantner S., Stoffels M., Riedel K., Givskov M., Hartmann A., Langebartels C., Eberl L. (2001). Visualization of N-Acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67:5761–5770

    Article  Google Scholar 

  25. Steidle A., Allesen-Holm M., Riedel K., Berg G., Givskov M., Molin S., Eberl L. (2002). Identification and characterization of an N-Acylhomoserine Lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl. Environ. Microbiol. 68:6371–6382

    Article  Google Scholar 

  26. Thyson J., Othmer H. (1978). The dynamics of feedback control circuits in biochemical pathways. Progr. Theor. Biol. 5:1–62

    Google Scholar 

  27. Walter W. (1964). Differential- und Integral-Ungleichungen. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  28. Ward J., King J., Koerber A., Croft J., Socket R., Williams P. (2004). Cell-signalling repression in bacterial quorum sensing. Math. Med. Biol. 21:169–204

    Article  MATH  Google Scholar 

  29. Waters C., Bassler B. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21:319–346

    Article  Google Scholar 

  30. Whitehead N., Barnard A., Slater H., Simpson N., Salmond G. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25:365–404

    Article  Google Scholar 

  31. You L., Cox R.S. III, Weiss R., Arnold F.A. (2004). Programmed population control by cell-cell communication and regulated killing. Nature 428:868–871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Müller.

Additional information

Ch. Kuttler and J. Müller would like to dedicate this work to K.P. Hadeler, who not only introduced us to the fascinating field of mathematical biology, but also offered friendship and help at so many occasions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, J., Kuttler, C., Hense, B.A. et al. Cell–cell communication by quorum sensing and dimension-reduction. J. Math. Biol. 53, 672–702 (2006). https://doi.org/10.1007/s00285-006-0024-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0024-z

Keywords

Mathematics Subject Classification (2000)

Navigation