Skip to main content

Isolation of Environmental Bacteria Able to Degrade Sterols and/or Bile Acids: Determination of Cholesterol Oxidase and Several Hydroxysteroid Dehydrogenase Activities in Rhodococcus, Gordonia, and Pseudomonas putida

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

  • 380 Accesses

Abstract

Interest about the isolation and characterization of steroid-catabolizing bacteria has increased over time due to the massive release of these recalcitrant compounds and their deleterious effects or their biotransformation derivatives as endocrine disruptors for wildlife, as well as their potential use in biotechnological approaches for the synthesis of pharmacological compounds. Thus, in this chapter, an isolation protocol to select environmental bacteria able to degrade sterols, bile acids, and androgens is shown. Moreover, procedures for the determination of cholesterol oxidase or different hydroxysteroid dehydrogenase activities in Pseudomonas putida DOC21, Rhodococcus sp. HE24.12, Gordonia sp. HE24.4J and Gordonia sp. HE24.3 are also detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kodner RB, Pearson A, Summons RE et al (2008) Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 6:411–420

    Article  CAS  PubMed  Google Scholar 

  2. Bergstrand LH, Cardenas E, Holert J et al (2016) Delineation of steroid-degrading microorganisms through comparative genomic analysis. MBio 7:1–14

    Google Scholar 

  3. Bobrovskiy I, Hope JM, Nettersheim BJ et al (2021) Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock record. Nat Ecol Evol 5:165–168

    Article  PubMed  Google Scholar 

  4. Olivera ER, Luengo JM (2019) Steroids as environmental compounds recalcitrant to degradation: Genetic mechanisms of bacterial biodegradation pathways. Genes (Basel) 10:512

    Article  CAS  PubMed  Google Scholar 

  5. Feller FM, Holert J, Yücel O et al (2021) Degradation of bile acids by soil and water bacteria. Microorganisms (Basel) 9:1759

    Article  CAS  Google Scholar 

  6. Lange IG, Daxenberger A, Schiffer B et al (2002) Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Anal Chim Acta 473:27–37

    Article  CAS  Google Scholar 

  7. Froehner S, Martins RF, Errera MR (2009) Assessment of fecal sterols in Barigui River sediments in Curitiba, Brazil. Environ Monit Assess 157:591–600

    Article  CAS  PubMed  Google Scholar 

  8. Chang H-S, Choo K-H, Lee B et al (2009) The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater 172:1–12

    Article  CAS  PubMed  Google Scholar 

  9. Santos LHMLM, Araújo AN, Fachini A et al (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  PubMed  Google Scholar 

  10. Matić Bujagić I, Grujić S, Laušević M et al (2019) Emerging contaminants in sediment core from the Iron Gate I Reservoir on the Danube River. Sci Total Environ 662:77–87

    Article  PubMed  Google Scholar 

  11. Mendelski MN, Dölling R, Feller FM et al (2019) Steroids originating from bacterial bile acid degradation affect Caenorhabditis elegans and indicate potential risks for the fauna of manured soils. Sci Rep 9:11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jenkins RL (2003) Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol Sci 73:53–59

    Article  CAS  PubMed  Google Scholar 

  13. Orrego R, Guchardi J, Hernandez V et al (2009) Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout. Environ Toxicol Chem 28:181

    Article  CAS  PubMed  Google Scholar 

  14. Howell WM, Black DA, Bortone SA (1980) Abnormal expression of secondary sex characters in a population of mosquitofish, Gambusia affinis holbrooki: evidence for environmentally-induced masculinization. Copeia:676

    Google Scholar 

  15. Kolodziej EP, Gray JL, Sedlak DL (2003) Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent. Environ Toxicol Chem 22:2622

    Article  CAS  PubMed  Google Scholar 

  16. Orlando EF, Kolok AS, Binzcik GA et al (2004) Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. Environ Health Perspect 112:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oetken M, Bachmann J, Schulte-Oehlmann U et al (2004) Evidence for endocrine disruption in invertebrates. Int Rev Cytol 236:1–44

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y, Huang H, Sun Y et al (2013) Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water. Environ Pollut 180:339–344

    Article  CAS  PubMed  Google Scholar 

  19. Morthorst JE, Brande-Lavridsen N, Korsgaard B et al (2014) 17β-Estradiol causes abnormal development in embryos of the viviparous eelpout. Environ Sci Technol 48:14668–14676

    Article  CAS  PubMed  Google Scholar 

  20. Lambert MR, Giller GSJ, Barber LB et al (2015) Suburbanization, estrogen contamination, and sex ratio in wild amphibian populations. Proc Natl Acad Sci U S A 112:11881–11886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Regnault C, Usal M, Veyrenc S et al (2018) Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proc Natl Acad Sci U S A 115:E4416–E4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiang Y, Wei ST, Wang P et al (2020) Microbial degradation of steroid sex hormones: implications for environmental and ecological studies. Microb Biotechnol 13:926–949

    Article  CAS  PubMed  Google Scholar 

  23. García JL, Uhía I, Galán B (2012) Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 5:679–699

    Article  PubMed  PubMed Central  Google Scholar 

  24. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  25. Fernández-Cabezón L, Galán B, García JL (2018) New insights on steroid biotechnology. Front Microbiol 9:958

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feng J, Wu Q, Zhu D et al (2022) Biotransformation enables innovations toward green synthesis of steroidal pharmaceuticals. ChemSusChem 15:e202102399

    Article  CAS  PubMed  Google Scholar 

  27. Olivera ER, de la Torre M, Barrientos Á et al (2018) Steroid catabolism in bacteria: Genetic and functional analyses of stdH and stdJ in Pseudomonas putida DOC21. Can J Biotechnol 2:88–99

    Article  Google Scholar 

  28. Doukyu N (2009) Characteristics and biotechnological applications of microbial cholesterol oxidases. Appl Microbiol Biotechnol 83:825–837

    Article  CAS  PubMed  Google Scholar 

  29. Oppermann UCT, Maser E (1996) Characterization of a 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from the Gram-negative bacterium Comamonas testosteroni. Eur J Biochem 241:744–749

    Article  CAS  PubMed  Google Scholar 

  30. Maser E, Xiong G, Grimm C et al (2001) 3α-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation. Chem Biol Interact 130–132:707–722

    Article  PubMed  Google Scholar 

  31. Birkenmaier A, Holert J, Erdbrink H et al (2007) Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. J Bacteriol 189:7165–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Genti-Raimondi S, Tolmasky ME, Patrito LC et al (1991) Molecular cloning and expression of the β-hydroxysteroid dehydrogenase gene from Pseudomonas testosteroni. Gene 105:43–49

    Article  CAS  PubMed  Google Scholar 

  33. Martínez-Blanco H, Reglero A, Rodriguez-Aparicio LB et al (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265:7084–7090

    Article  PubMed  Google Scholar 

  34. Boczar D, Michalska K (2022) Cyclodextrin inclusion complexes with antibiotics and antibacterial agents as drug-delivery systems—A pharmaceutical perspective. Pharmaceutics 14:1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Regev O, Zana R (1999) Aggregation behavior of tyloxapol, a nonionic surfactant oligomer, in aqueous solution. J Colloid Interface Sci 210:8–17

    Article  CAS  PubMed  Google Scholar 

  36. Merino E, Barrientos A, Rodríguez J et al (2013) Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: Evidence of a common pathway. Appl Microbiol Biotechnol 97:891–904

    Article  CAS  PubMed  Google Scholar 

  37. Yehia HM, Hassanein WA, Ibraheim SM (2015) Purification and characterisation of the extracellular cholesterol oxidase enzyme from Enterococcus hirae. BMC Microbiol 15:178

    Article  PubMed  PubMed Central  Google Scholar 

  38. Steckelbroeck S, Jin Y, Gopishetty S et al (2004) Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. J Biol Chem 279:10784–10795

    Article  CAS  PubMed  Google Scholar 

  39. Schultz RM, Groman EV, Engel LL (1977) 3(17)beta-Hydroxysteroid dehydrogenase of Pseudomonas testosteroni. A convenient purification and demonstration of multiple molecular forms. J Biol Chem 252:3775–3783

    Article  CAS  PubMed  Google Scholar 

  40. Al-Khadhra RS (2020) The determination of common anabolic steroid and stimulants in nutritional supplements by HPLC-DAD and LC-MS. J Chromatogr Sci 58:355–361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Development of the methods here presented has been supported by the Ministerio de Economía y Competitividad (Madrid, España, grants BFU2009-11545-C03-01, BIO2012-39695-C02-02, and BIO2015-66960-C3-3R), by a CENIT Project RTC-2014-2249-1 (CDTI, Ministerio de Economía y Competitividad, Madrid, España), and by a grant from the Junta de Castilla y León (Consejería de Educación, Valladolid, España) LE246A11-2. The authors also want to thank the support to their actual research by the Horizon Europe Framework Programme (call: HORIZON-CL4-2021-RESILIENCE-01-11) through the ESTELLA project (“DESign of bio-based Thermoset polymer with rEcycLing capabiLity by dynAmic bonds for bio-composite manufacturing”) (Project no. 101058371), the Ministerio de Ciencia e Innovación (grant TED2021-132593B-I00 belonging to the 2021 convocatory “Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital” and RTI2018-095584-B-C43 from Proyectos de I+D+i RETOS INVESTIGACION), and the Junta de Castilla y León, grant LE250P20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Chamizo-Ampudia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chamizo-Ampudia, A., Getino, L., Luengo, J.M., Olivera, E.R. (2023). Isolation of Environmental Bacteria Able to Degrade Sterols and/or Bile Acids: Determination of Cholesterol Oxidase and Several Hydroxysteroid Dehydrogenase Activities in Rhodococcus, Gordonia, and Pseudomonas putida. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics