Skip to main content
Log in

Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nineteen different steroid-degrading bacteria were isolated from soil samples by using selective media containing either cholesterol or deoxycholate as sole carbon source. Strains that assimilated cholesterol (17 COL strains) were gram-positive, belonging to the genera Gordonia, Tsukamurella, and Rhodococcus, and grew on media containing other steroids but were unable to use deoxycholate as sole carbon source. Surprisingly, some of the COL strains unable to grow using deoxycholate as sole carbon source were able to catabolize other bile salts (e.g., cholate). Conversely, strains able to grow using deoxycholate as the sole carbon source (two DOC isolates) were gram-negative, belonging to the genus Pseudomonas, and were unable to catabolize cholesterol and other sterols. COL and DOC were included into the corresponding taxonomic groups based on their morphology (cells and colonies), metabolic properties (kind of substrates that support bacterial growth), and genetic sequences (16S rDNA and rpoB). Additionally, different DOC21 Tn5 insertion mutants have been obtained. These mutants have been classified into two different groups: (1) those affected in the catabolism of bile salts but that, as wild type, can grow in other steroids and (2) those unable to grow in media containing any of the steroids tested. The identification of the insertion point of Tn5 in one of the mutants belonging to the second group (DOC21 Mut1) revealed that the gene knocked-out encodes an A-ring meta-cleavage dioxygenase needed for steroid catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adékambi T, Drancourt M, Raoult D (2009) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17:37–45

    Article  Google Scholar 

  • Anzai Y, Kim H, Park J-Y, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    Article  CAS  Google Scholar 

  • Arcos M, Olivera ER, Arias S, Naharro G, Luengo JM (2010) The 3, 4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U. Environ Microbiol 12:1684–1704

    CAS  Google Scholar 

  • Bagdasarian M, Lurz R, Ruckert B, Franklin FC, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247

    Article  CAS  Google Scholar 

  • Birkenmaier A, Holert J, Erdbrink H, Moeller HM, Friemel A, Schoenenberger R, Suter MJ, Klebensberger J, Philipp B (2007) Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. J Bacteriol 189:7165–7173

    Article  CAS  Google Scholar 

  • Björkhem I, Eggertsen G (2001) Genes involved in initial steps of bile acid synthesis. Curr Opin Lipidol 12:97–103

    Article  Google Scholar 

  • Campanella L, Favero G, Mastrofini D, Tomassetti M (1996) Toxicity order of cholanic acids using an immobilised cell biosensor. J Pharm Biomed Anal 14:1007–1013

    Article  CAS  Google Scholar 

  • Colborn T (2004) Endocrine disruption overview: are males at risk? Adv Exp Med Biol 545:189–201

    Article  CAS  Google Scholar 

  • Drzyzga O, Navarro Llorens JM, Fernández de las Heras L, García Fernández E, Perera J (2009) Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol 59:1011–1015

    Article  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Meinke R, Kämpfer P, Hollender J (2006) Denitrasoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56:1547–1552

    Article  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, Hollender J (2008) Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 58:2215–2223

    Article  CAS  Google Scholar 

  • Fernández de las Heras L, García Fernández E, Navarro Llorens JM, Perera J, Drzyzga O (2009) Morphological, physiological, and molecular characterization of a newly isolated steroid-degrading Actinomycete, identified as Rhodococcus ruber strain Chol-4. Curr Microbiol 59:548–553

    Article  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  • Gibson DT, Koch JR, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2662

    Article  CAS  Google Scholar 

  • Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation–restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  CAS  Google Scholar 

  • Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    Article  CAS  Google Scholar 

  • Hayakawa S (1982) Microbial transformation of bile acids. A unified scheme for bile acid degradation, and hydroxylation of bile acids. Z Allg Mikrobiol 22:309–326

    Article  CAS  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vector containing non-antibiotic markers for cloning and stable chromosomal insertion of foreign DNA in Gram-negative bacteria. J Bacteriol 172:6557–6567

    CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Stalely JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T (2001) Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology 147:3367–3375

    CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Koshino H, Kurita T, Kudo T (2005) Identification of 9, 17-dioxo-1, 2, 3, 4, 10, 19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2, 4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol 71:5275–5281

    Article  CAS  Google Scholar 

  • Horinouchi M, Kurita T, Hayashi T, Kudo T (2010) Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 122:253–263

    Article  CAS  Google Scholar 

  • Kim D, Lee JS, Kim J, Kang SJ, Yoon JH, Kim WG, Lee CH (2007) Biosynthesis of bile acids in a variety of marine bacterial taxa. J Microbiol Biotechnol 17:403–407

    CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MH, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Kurdi P, Kawanishi K, Mizutani K, Yokota A (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188:1979–1986

    Article  CAS  Google Scholar 

  • Kurisu F, Ogura M, Saitoh S, Yamazoe A, Yagi O (2010) Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. J Biosci Bioeng 109:576–582

    Article  CAS  Google Scholar 

  • Lamb DC, Jackson CJ, Warrilow AGS, Maning NJ, Kelly DE, Kelly SL (2007) Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis. Mol Biol Evol 24:1714–1721

    Article  CAS  Google Scholar 

  • Länge R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227

    Google Scholar 

  • Lange A, Katsu Y, Ichikawa R, Paull GC, Chidgey LL, Coe TS, Iguchi T, Tyler CR (2008) Altered sexual development in roach (Rutilus rutilus) exposed to environmental concentrations of the pharmaceutical 17α-ethinylestradiol and associated expression dynamics of aromatases and estrogen receptors. Toxicol Sci 106:113–123

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Martínez-Blanco H, Reglero A, Rodríguez-Aparicio LB, Luengo JM (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265:7084–7090

    Google Scholar 

  • Mathieu JM, Mohn WW, Eltis LD, LeBlanc JC, Stewart GR, Dresen C, Okamoto K, Alvarez PJ (2010) 7-Ketocholesterol catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol 76:352–355

    Article  Google Scholar 

  • Olivera ER, Miñambres B, García B, Muñiz C, Moreno MA, Fernández A, Díaz E, García JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl–CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424

    Article  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  CAS  Google Scholar 

  • Petrusma M, Dijkhuizen L, van der Geize R (2009) Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9α-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol 75:5300–5307

    Article  CAS  Google Scholar 

  • Prieto AI, Ramos-Morales F, Casadesús J (2004) Bile-induced DNA damage in Salmonella enterica. Genetics 168:1787–1794

    Article  CAS  Google Scholar 

  • Prieto AI, Ramos-Morales F, Casadesús J (2006) Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics 174:575–584

    Article  CAS  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Selvaraj G, Iyer VN (1983) Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol 156:1292–1300

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tayeb L, Ageron E, Grimont F, Grimont PAD (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773

    Article  Google Scholar 

  • Uhía I, Galán B, Morales V, García JL (2011) Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2 155. Environ Microbiol 13:943–959

    Article  Google Scholar 

  • Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104:1947–1952

    Article  Google Scholar 

  • Wollam J, Antebi A (2011) Sterol regulation of metabolism, homeostasis, and development. Annu Rev Biochem 80:885–916

    Article  CAS  Google Scholar 

  • Yam KC, D'Angelo I, Kalscheuer R, Zhu H, Wang J-X, Snieckus V, Ly LH, Converse PJ, Jacobs WR Jr, Strynadka N, Eltis LD (2009) Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5(3):e1000344. doi:10.1371/journal.ppat.1000344

    Article  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants BFU2009-11545-C03-01 from Ministerio de Ciencia e Innovación (Spain) and LE246A11-2 from Junta de Castilla y León (Consejería de Educación, Spain). JR, AB, and EM are recipient of fellowships given by the Ministerio de Ciencia e Innovación (JR and AB) and by the Ministerio de Educación y Ciencia (EM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Olivera.

Additional information

E. Merino and A. Barrientos contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 12 kb)

Supplementary Table 2

(DOCX 12 kb)

Supplementary Table 3

(DOCX 13 kb)

Supplementary Table 4

(DOCX 27 kb)

Supplementary Table 5

(DOCX 16 kb)

Supplentary Table 6

(DOCX 12 kb)

Suppl. Figure 1

Structure of the steroid compounds tested in this work. 1. Cholesterol; 2. Ergosterol; 3. β-Sitosterol; 4. Stigmasterol; 5. 5β-Cholanate; 6. Lithocholate; 7. Chenodeoxycholate; 8. Ursodeoxycholate; 9. Deoxycholate; 10. Cholate; 11. Dehydrocholate; 12. Progesterone; 13. 5-Pregnen-3β-ol-20-one; 14. Testosterone; 15. 17α-Methyltestosterone; 16. 1-Dehydro-17α-Methyltestosterone; 17. Prednisone; 18. Androstanolone; 19. β-Estradiol; 20. trans-dehydroandrosterone; 21. Estrone; 22. trans-androsterone; 23. 4-Androstene-3,17-dione. Carbon atoms are numbered over colesterol structure (1). (JPEG 1.36 MB)

High resolution image file (TIFF 203 KB)

Suppl. Figure 2

Morphology of the colonies (a) and cells (b) of the COL isolates. Strains numbered 1–8 belong to the genus Gordonia: COL11 (1), COL17 (2), COL19 (3), COL20 (4), COL21 (5), COL23 (6), COL26 (7), and COL33 (8); strains numbered 9–11 belong to the genus Tsukamurella: COL14 (9), COL16 (10), and COL18 (11); and strains numbered 12–17 belong to the genus Rhodococcus: COL22 (12), COL25 (13), COL27 (14), COL28 (15). COL29 (16), and COL30 (17). (a) optical microscopy images, bar indicates 1 mm; (b) scanning microscopy images, bar indicates 1 μm. (JPEG 162 kb)

High resolution image file (TIFF 29550 kb)

Suppl. Figure 3

(A and C) Optical microscopy images of the colonies and (B and D) scanning microscopy images of the cells of strains DOC19 (A and B) and DOC21 (C and D). In the optical microscopy images (A and C), the bar indicates 1 mm; in the scanning microscopy photographs (B and D), the bar indicates 1 μm. (JPEG 34 kb)

High resolution image file (TIFF 1855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merino, E., Barrientos, A., Rodríguez, J. et al. Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biotechnol 97, 891–904 (2013). https://doi.org/10.1007/s00253-012-3966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3966-7

Keywords

Navigation