Crossa J, Burgueño J, Cornelius PL, McLaren G, Trethowan R, Krishnamachari A (2006) Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci 46:1722–1733. https://doi.org/10.2135/cropsci2005.11-0427
CrossRef
Google Scholar
Burgueño J, Crossa J, Cornelius PL, Trethowan R, McLaren G, Krishnamachari A (2007) Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes. Crop Sci 47:311–320. https://doi.org/10.2135/cropsci2006.09.0564
CrossRef
Google Scholar
Crossa J (1990) Statistical analyses of multilocation trials. Adv Agron 44:55–85. https://doi.org/10.1016/S0065-2113(08)60818-4
CrossRef
Google Scholar
Crossa J, Yang R-C, Cornelius PL (2004) Studying crossover genotype × environment interaction using linear-bilinear models and mixed models. J Agric Biol Env Stat 9:362–380
Google Scholar
Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinburg 52:399–433
Google Scholar
Wright S (1921) Systems of mating, I-IV. Genetics 6:111–178
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, 1st edn. Sinauer Associates, Sunderland, MA
Google Scholar
Bernardo R (2010) Breeding for quantitative traits in plants, 2nd edn. Stemma Press, Woodbury, MI
Google Scholar
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975. https://doi.org/10.1016/j.tplants.2017.08.011
CAS
CrossRef
PubMed
Google Scholar
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829
CAS
PubMed
PubMed Central
Google Scholar
Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719
Google Scholar
Schulz-Streeck T, Ogutu JO, Gordillo A, Karaman Z, Knaak C, Piepho HP (2013) Genomic selection allowing for marker-by-environment interaction. Plant Breed 132:532–538. https://doi.org/10.1111/pbr.12105
CrossRef
Google Scholar
Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160
Google Scholar
Bernardo R, Yu JM (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090
Google Scholar
Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161
PubMed
Google Scholar
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes M (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385
PubMed
PubMed Central
Google Scholar
de los Campos G, Gianola D, Rosa GJM, Weigel K, Crossa J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92:295–308
Google Scholar
de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2012) Whole genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345. https://doi.org/10.1534/genetics.112.143313
CrossRef
Google Scholar
Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724
CAS
PubMed
PubMed Central
Google Scholar
Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C (2011) Genomic selection and prediction in plant breeding. J Crop Improv 25:239–246
Google Scholar
Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, Jannink J-L, Lopez-Cruz MA, Babu R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 3:1903–1926
PubMed
PubMed Central
Google Scholar
Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60
CAS
PubMed
Google Scholar
Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480
PubMed
Google Scholar
Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manes Y, Dreisigacker S (2012) Comparison between linear and non-parametric models for genome-enabled prediction in wheat. G3 2:1595–1605
PubMed
PubMed Central
Google Scholar
Hickey JM, Crossa J, Babu R, de los Campos G (2012) Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Sci 52:654–663
Google Scholar
Gonzalez-Camacho JM, de los Campos G, Perez P, Gianola D, Cairns J, Mahuku G, Raman B, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125:759–771. https://doi.org/10.1007/s00122-012-1868-8
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Gonzalez-Camacho JM, Crossa J, Perez-Rodriguez P, Ornella O, Gianola D (2016) Genome-enabled prediction using probabilistic neural network classifiers. BMC Genomics 17:208. https://doi.org/10.1186/s12864-016-2553-1
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220
CAS
PubMed
Google Scholar
Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776
PubMed
Google Scholar
Windhausen VS, Atlin GN, Crossa J, Hickey JM, Grudloyma P, Terekegne A, Semagn K, Beyene Y, Raman B, Cairns JE, Jannink J-L, Sorrels M, Technow F, Riedelsheimer C, Melchinger AE (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 2:1427–1436. https://doi.org/10.1534/g3.112.003699
CrossRef
PubMed
PubMed Central
Google Scholar
Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. G3 3:197–203
PubMed
PubMed Central
Google Scholar
Heffner EL, Sorrels MR, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12
CAS
Google Scholar
Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177
CAS
PubMed
Google Scholar
Lorenz AJ, Chao S, Asoro F, Heffner EL, Hayasi T, Iwata H, Smith K, Sorrels ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123. https://doi.org/10.1016/B978-0-12-385531-2.00002-5
CrossRef
Google Scholar
Daetwyler HD, Kemper KE, van der Werf JHJ, Hayes BJ (2015) Components of the accuracy of genomic prediction in a multi-breed sheep population. J Anim Sci 90:3375–3384. https://doi.org/10.2527/jas2011-4557
CAS
CrossRef
Google Scholar
Jarquín D, Crossa J, Lacaze X, Cheyron PD, Daucourt J et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607
PubMed
Google Scholar
Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink J-L, Singh RP, Autrique E, de los Campos, G. (2015) Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. G3 5:569–582. https://doi.org/10.1534/g3.114.016097
CrossRef
PubMed
PubMed Central
Google Scholar
Crossa J, de los Campos G, Maccaferri M, Tuberosa R, Burgueño J, Perez-Rodriguez P (2016) Extending the marker x environment interaction model for genomic-enabled prediction and genome-wide association analyses in Durum wheat. Crop Sci 56:1–17. https://doi.org/10.2135/cropsci2015.04.0260
CrossRef
Google Scholar
Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P et al (2016) Genomic prediction of genotype · environment interaction kernel regression models. Plant Genome 9:1–20. https://doi.org/10.3835/plantgenome2016.03.0024
CrossRef
Google Scholar
Cuevas J, Crossa J, Montesinos-Lopez O, Burgueno J, Perez-Rodriguez P et al (2017) Bayesian genomic prediction with genotype · environment interaction kernel models. G3 7:41–53
CAS
PubMed
Google Scholar
Cuevas J, Granato I, Fritsche-Neto R, Montesinos-Lopez OA, Burgueño J et al (2018) Genomic-enabled prediction Kernel models with random intercepts for multi-environment trials. G3 8:1347–1365
PubMed
PubMed Central
Google Scholar
Ly D, Chenu K, Gauffreteau A et al (2017) Nitrogen nutrition index predicted by a crop model improves the genomic prediction of grain number for a bread wheat core collection. Field Crops Res. 214:331–340
Google Scholar
Ly D, Huet S, Gauffreteau A et al (2018) Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L.) by genomic random regression. Field Crops Res 216:32–41. https://doi.org/10.1016/j.fcr.2017.08.020
CrossRef
Google Scholar
Rincent R, Malosetti M, Ababaei B et al (2019) Using crop growth model stress covariates and AMMI decomposition to better predict genotype-by-environment interactions. Theor Appl Genet 132:3399–3411
CAS
PubMed
Google Scholar
Costa-Neto G, Fritsche-Neto R, Crossa J (2021) Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials. Heredity 126:92–106. https://doi.org/10.1038/s41437-020-00353-1
CAS
CrossRef
PubMed
Google Scholar
Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, de los Campos G, Eskridge KM, Crossa J (2015) Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding. G3 5:29–300
Google Scholar
Montesinos-López OA, Montesinos-López A, Crossa J, Burgueño J, Eskridge K (2015) Genomic-enabled prediction of ordinal data with Bayesian logistic ordinal regression. G3 5:2113–2126. https://doi.org/10.1534/g3.115.021154
CrossRef
PubMed
PubMed Central
Google Scholar
Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Eskridge K, He X, Juliana P, Crossa J (2015) Genomic prediction models for count data. J Agric Biol Environ Stats 20:533–554
Google Scholar
Montesinos-López A, Montesinos-López OA, Crossa J, Burgueño J, Eskridge K, Falconi-Castillo E, He X, Singh P, Cichy K (2016) Genomic Bayesian prediction model for count data with Genotype × environment interaction. G3 6:1165–1177. https://doi.org/10.1534/g3.116.028118
CrossRef
PubMed
PubMed Central
Google Scholar
Montesinos-López A, Montesinos-López OA, Gianola D, Crossa J, Hernández-Suárez CM (2018) Multi-environment genomic prediction of plant traits using deep learners with a dense architecture. G3 8:3813–3828. https://doi.org/10.1534/g3.118.200740
CrossRef
PubMed
PubMed Central
Google Scholar
Montesinos-López OA, Montesinos-López A, Gianola D, Crossa J, Hernández-Suárez CM (2018) Multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant. G3 8:3829–3840
PubMed
PubMed Central
Google Scholar
Montesinos-López OA, Martín-Vallejo J, Crossa J, Gianola D, Hernández-Suárez CM et al (2019) New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes. G3 9:1545–1556
PubMed
PubMed Central
Google Scholar
Montesinos-López OA, Martín-Vallejo J, Crossa J, Gianola D, Hernández-Suárez CM et al (2019) A bench marking between deep learning, support vector machines and Bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding. G3 9:601–618
PubMed
PubMed Central
Google Scholar
Costa-Neto G, Galli G, Carvalho HF, Crossa J, Fritsche-Neto R (2021) EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. G3 11(4):jkab040. https://doi.org/10.1093/g3journal/jkab040
CrossRef
PubMed
PubMed Central
Google Scholar
Cooper M, Technow F, Messina C et al (2016) Use of crop growth models with whole-genome prediction: application to a maize multienvironment trial. Crop Sci 56:2141–2156. https://doi.org/10.2135/cropsci2015.08.0512
CrossRef
Google Scholar
Resende RT, Piepho HP, Rosa GJM, Silva-Junior OB, e Silva F, de Resende MDV et al (2020) Enviromics in breeding: applications and perspectives on envirotypic-assisted selection. Theor Appl Genet 134:95–112. https://doi.org/10.1007/s00122-020-03684-z
CrossRef
PubMed
Google Scholar
Morais Júnior OP, Duarte JB, Breseghello F, Coelho ASG, Magalhães Júnior AM (2018) Single-step reaction norm models for genomic prediction in multienvironment recurrent selection trials. Crop Sci 58:592–607
Google Scholar
de los Campos G, Pérez-Rodríguez P, Bogard M, Gouache D, Crossa J (2020) A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions. Nat Commun 11:4876. https://doi.org/10.1038/s41467-020-18480-y
CAS
CrossRef
PubMed Central
Google Scholar
Millet EJ, Kruijer W, Coupel-Ledru A et al (2019) Genomic prediction of maize yield across European environmental conditions. Nat Genet 51:952–956
CAS
PubMed
Google Scholar
Jarquín D, Kajiya-Kanegae H, Taishen C, Yabe S, Persa R, Yu J et al (2020) Coupling day length data and genomic prediction tools for predicting time-related traits under complex scenarios. Sci Rep 10:13382. https://doi.org/10.1038/s41598-020-70267-9
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
VanRaden PM (2007) Genomic measures of relationship and inbreeding. Interbull Bull 37:33–36
Google Scholar
VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423
CAS
PubMed
Google Scholar
Sousa MB, Cuevas J, Couto EGO, Pérez-Rodríguez P, Jarquín D et al (2017) Genomic-enabled prediction in maize using kernel models with genotype · environment interaction. G3 7:1995–2014. https://doi.org/10.1534/g3.117.042341
CrossRef
Google Scholar
Crossa J, Martini JWR, Gianola D, Pérez-Rodríguez P, Jarquín D, Juliana P, Montesinos-López OA, Cuevas J (2019) Genome-based prediction of single traits in multienvironment breeding trials. Front Genet 10:1168. https://doi.org/10.3389/fgene.2019.01168
CrossRef
PubMed
PubMed Central
Google Scholar
Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483–495
PubMed
PubMed Central
Google Scholar
Granato I, Cuevas J, Luna-Vázquez F, Crossa J, Montesinos-López O et al (2018) BGGE: a new package for genomic-enabled prediction incorporating genotype × environment interaction models. G3 8:3039–3047. https://doi.org/10.1534/g3.118.200435
CrossRef
PubMed
PubMed Central
Google Scholar
Cuevas J, Montesinos-López OA, Juliana P, Guzmán C, Pérez-Rodríguez P, González-Bucio J et al (2019) Deep kernel for genomic and near infrared prediction in multi-environments breeding trials. G3 9:2913–2924. https://doi.org/10.1534/g3.119.400493
CrossRef
PubMed
PubMed Central
Google Scholar
de los Campos G, Grüneberg A (2016) MTM (multiple-trait model) package [WWW Document]. http://quantgen.github.io/MTM/vignette.html. Accessed 25 Oct 2017
Cuevas J, Montesinos-López OA, Martini JWR, Pérez-Rodríguez P, Lillemo M, Crossa J (2020) Approximate genome-based kernel models for large data sets including main effects and interactions. Front Genet 11:567757. https://doi.org/10.3389/fgene.2020.567757
CrossRef
PubMed
PubMed Central
Google Scholar
Yates F, Cochran WG (1938) The analysis of groups of experiments. J Agric Sci 28:556–580
Google Scholar
Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agric Res 14:742–754
Google Scholar
Freeman GH, Perkins J, M. (1971) Environmental and genotype-environmental components of variability: VIII. Relations between genotypes grown in different environments and measures of these environments. Heredity 27:15–23
Google Scholar
Hardwick RC, Wood JT (1972) Regression methods for studying genotype-environment interactions. Heredity 28:209–222
CAS
PubMed
Google Scholar
Wood JT (1976) The use of environmental variables in the interpretation of genotype-environment interaction. Heredity 37:1–7
CAS
PubMed
Google Scholar
Magari R, Kang MS, Zhang Y (1997) Genotype by environment interaction for ear moisture loss rate in corn. Crop Sci 37:774–779
Google Scholar
Ramburan S, Zhou M, Labuschagne M (2011) Interpretation of genotype × environment interactions of sugarcane: identifying significant environmental factors. Field Crop Res 124:392–399
Google Scholar
Porker K, Coventry S, Fettell NA, Cozzolino D, Eglinton J (2020) Using a novel PLS approach for envirotyping of barley phenology and adaptation. Field Crop Res 246:1–11
Google Scholar
Gillberg J, Marttinen P, Mamitsuka H, Kaski S (2019) Modelling G × E with historical weather information improves genomic prediction in new environments. Bioinformatics 35:4045–4052. https://doi.org/10.1093/bioinformatics/btz197
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Malosetti M, Bustos-Korts D, Boer MP, van Eeuwijk FA (2016) Predicting responses in multiple environments: issues in relation to genotypexenvironment interactions. Crop Sci 56:2210–2222
Google Scholar
Dias KODG, Gezan SA, Guimarães CT, Nazarian A, Da Costa E, Silva L et al (2018) Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Heredity 121:24–37. https://doi.org/10.1038/s41437-018-0053-6
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Alves FC, Granato ÍSC, Galli G, Lyra DH, Fritsche-Neto R et al (2019) Bayesian analysis and prediction of hybrid performance. Plant Methods 15:1–18. https://doi.org/10.1186/s13007-019-0388-x
CrossRef
Google Scholar
Ferrão LFV, Marinho CD, Munoz PR, Resende MFR (2020) Improvement of predictive ability in maize hybrids by including dominance effects and marker × environment models. Crop Sci 60:666–677. https://doi.org/10.1002/csc2.20096
CAS
CrossRef
Google Scholar
Rogers AR, Dunne JC, Romay C, Bohn M, Buckler ES, Ciampitti IA et al (2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3 11:2. https://doi.org/10.1093/g3journal/jkaa050
CrossRef
Google Scholar
Smith AB, Ganesalingam A, Kuchel H, Cullis BR (2014) Factor analytic mixed models for the provision of grower information from national crop variety testing programs. Theor Appl Genet 128:55–72
PubMed
PubMed Central
Google Scholar
Guo T, Mu Q, Wang J, Vanous AE, Onogi A, Iwata H et al (2020) Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Res 30:673–683. https://doi.org/10.1101/gr.255703.119
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Pérez-Rodríguez P, Flores-Galarza S, Vaquera-Huerta H, del Valle-Paniagua DH, Montesinos-López OA, Crossa J (2020) Genome-based prediction of Bayesian linear and non-linear regression models for ordinal data. Plant Genome 13:20021. https://doi.org/10.1002/tpg2.20021
CrossRef
Google Scholar
Stroup WW (2015) Rethinking the analysis of non-normal data in plant and soil science. Agron J 107:811–827
Google Scholar
Wang CL, Ding XD, Wang JY, Liu JF, Fu WX, Zhang Z, Jin ZJ, Zhang Q (2012) Bayesian methods for estimating GEBVs of threshold traits. Heredity 110:213–219
PubMed
PubMed Central
Google Scholar
Kizilkaya K, Fernando RL, Garrick DJ (2014) Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations. Genet Sel Evol 46:37. https://doi.org/10.1186/1297-9686-46-37
CrossRef
PubMed
PubMed Central
Google Scholar
Brier GW (1950) Verification of forecasts expressed in terms of probability. Monthly Weather Rev 78:1–3
Google Scholar
Misztal I, Legarra A, Aguilar I (2014) Using recursion to compute the inverse of the genomic relationship matrix. J Dairy Sci 97:3943–3952. https://doi.org/10.3168/jds.2013-7752
CAS
CrossRef
PubMed
Google Scholar
Misztal I (2016) Inexpensive computation of the inverse of the genomic relationship matrix in populations with small effective population size. Genetics 202:401–409. https://doi.org/10.1534/genetics.115.182089
CAS
CrossRef
PubMed
Google Scholar
Pérez P, de los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome 3:106–116. https://doi.org/10.3835/plantgenome2010.04.0005
CrossRef
PubMed
PubMed Central
Google Scholar
Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome J 4:250. https://doi.org/10.3835/plantgenome2011.08.0024
CrossRef
Google Scholar
de los Campos G, Pérez-Rodríguez P (2018) BGLR: Bayesian generalized linear regression. R Package Version 1.0.8. https://CRAN.R-project.org/web/packages/BGLR/BGLR.pdf
Butler D, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml–R reference manual version 3. VSN Int. Ltd., Hemel Hempstead
Google Scholar
Dickerson GE (1962) Implications of genetic-environmental interaction in animal breeding. Anim Prod 4:47–63. https://doi.org/10.1017/S0003356100034395
CrossRef
Google Scholar
Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One 11:e0156744. https://doi.org/10.1371/journal.pone.0156744
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Montesinos-López OA, Montesinos-López A, Luna-Vázquez FJ, Toledo FH, Pérez-Rodríguez P, Lillemo M et al (2019) An R package for Bayesian analysis of multi-environment and multi-trait multi-environment data for genome-based prediction. G3 9:1355–1369. https://doi.org/10.1534/g3.119.400126
CrossRef
PubMed
PubMed Central
Google Scholar
Runcie DE, Qu J, Cheng H, Crawford L (2020) MegaLMM: mega-scale linear mixed models for genomic predictions with thousands of traits. bioRxiv. https://doi.org/10.1101/2020.05.26.116814
Rincent R, Charpentier JP, Faivre-Rampant P, Paux E, Le Gouis J et al (2018) Phenomic selection is a low cost and high-throughput method based on indirect predictions: proof of concept on wheat and poplar. G3 8:3961–3972
CAS
PubMed
PubMed Central
Google Scholar
Krause MR, González-Pérez L, Crossa J, Pérez-Rodríguez P, Montesinos-López O et al (2019) Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat. G3 9:1231–1247
PubMed
PubMed Central
Google Scholar
Onogi A, Watanabe M, Mochizuki T et al (2016) Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Theor and Appl Genet 129:805–817
Google Scholar
Onogi A, Watanabe M, Mochizuki T, Hayashi T, Nakagawa H, Hasegawa T et al (2016) Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Theor Appl Genet 129:805–817. https://doi.org/10.1007/s00122-016-2667-5
CrossRef
PubMed
Google Scholar
Rincent R, Kuhn E, Monod H et al (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theor Appl Genet 130:1735–1752. https://doi.org/10.1007/s00122-017-2922-4
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with whole genome prediction through approximate Bayesian computation. PLoS One 10:e0130855. https://doi.org/10.1371/journal.pone.0130855
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Messina CD, Technow F, Tang T et al (2018) Leveraging biological insight and environmental variation to improve phenotypic prediction: integrating crop growth models (CGM) with whole genome prediction (WGP). Eur J Agron 100:151–162. https://doi.org/10.1016/j.eja.2018.01.007
CrossRef
Google Scholar
Rincent R, Laloe D, Nicolas S et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728. https://doi.org/10.1534/genetics.112.141473
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Atanda SA, Olsen M, Burgueño J, Crossa J, Dzidzienyo D, Beyene Y, Gowda M, Dreher K, Zhang X, Prasanna BM, Tongoona P, Danquah EY, Olaoye G, Robbins KR (2021) Maximizing efficiency of genomic selection in CIMMYT’s tropical maize breeding program. Theor Appl Genet 134:279–294. https://doi.org/10.1007/s00122-020-03696-9
CAS
CrossRef
PubMed
Google Scholar
Ben-Sadoun S, Rincent R, Auzanneau J, Oury FX, Rolland B, Heumez E, Ravel C, Charmet G, Bouchet S (2020) Economical optimization of a breeding scheme by selective phenotyping of the calibration set in a multi-trait context: application to bread making quality. Theor Appl Genet 133:2197–2212. https://doi.org/10.1007/s00122-020-03590-4
CAS
CrossRef
PubMed
Google Scholar
White JW, Hoogenboom G (1996) Simulating effects of genes for physiological traits in a process-oriented crop model. Agron J 88:416–422
Google Scholar
Reymond M, Muller B, Leonardi A et al (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675
CAS
PubMed
PubMed Central
Google Scholar
Robert P, Le Gouis J, The Breadwheat Consortium, Rincent R (2020) Combining crop growth modelling with trait-assisted prediction improved the prediction of genotype by environment interactions. Front Plant Sci 11, 827. https://doi.org/10.3389/fpls.2020.00827