Skip to main content

Mouse Models of Diffuse Lower-Grade Gliomas of the Adult

  • Protocol
  • First Online:
Brain Tumors

Part of the book series: Neuromethods ((NM,volume 158))

  • 926 Accesses

Abstract

Diffuse gliomas of the adult are common primary brain tumors. Glioblastomas are the most aggressive type of gliomas. Lower-grade gliomas (astrocytomas and oligodendrogliomas) are less aggressive yet can progress to glioblastomas. Whereas our understanding of glioblastoma biology has increased dramatically in the last few years, the cellular and molecular mechanisms underlying the initiation and development of lower-grade gliomas are less understood. This is partly due to the lack of relevant models for this disease. The goal of this chapter is to provide the reader with a review of existing tools to model diffuse gliomas in mice, to discuss the current models and perspectives on modeling lower-grade gliomas, with a particular focus on oligodendrogliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology 19(suppl_5):v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  3. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772. https://doi.org/10.1158/1078-0432.CCR-12-3002

    Article  CAS  PubMed  Google Scholar 

  4. The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  5. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavare S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014. https://doi.org/10.1073/pnas.1219747110

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, Charles N, Michor F, Holland EC (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26(2):288–300. https://doi.org/10.1016/j.ccr.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, Shimamura T, Niida A, Motomura K, Ohka F, Yamamoto T, Tanahashi K, Ranjit M, Wakabayashi T, Yoshizato T, Kataoka K, Yoshida K, Nagata Y, Sato-Otsubo A, Tanaka H, Sanada M, Kondo Y, Nakamura H, Mizoguchi M, Abe T, Muragaki Y, Watanabe R, Ito I, Miyano S, Natsume A, Ogawa S (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47(5):458–468. https://doi.org/10.1038/ng.3273

    Article  CAS  PubMed  Google Scholar 

  8. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744. https://doi.org/10.1038/nature08617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30. https://doi.org/10.1016/j.ccr.2010.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O'Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478. https://doi.org/10.1038/nature10860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suva ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114. https://doi.org/10.1038/nature16490

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray BA, O'Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter CM, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, Fennell T, Fisher S, Gabriel S, Getz G, Gibbs R, Guin R, Hadjipanayis A, Hayes DN, Hinoue T, Hoadley K, Holt RA, Hoyle AP, Jefferys SR, Jones S, Jones CD, Kucherlapati R, Lai PH, Lander E, Lee S, Lichtenstein L, Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, Mayo M, Meng S, Meyerson ML, Mieczkowski PA, Moore RA, Mose LE, Mungall AJ, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Protopopov A, Ren X, Roach J, Sabedot TS, Schein J, Schumacher SE, Seidman JG, Seth S, Shen H, Simons JV, Sipahimalani P, Soloway MG, Song X, Sun H, Tabak B, Tam A, Tan D, Tang J, Thiessen N, Triche T Jr, Van Den Berg DJ, Veluvolu U, Waring S, Weisenberger DJ, Wilkerson MD, Wong T, Wu J, Xi L, Xu AW, Yang L, Zack TI, Zhang J, Aksoy BA, Arachchi H, Benz C, Bernard B, Carlin D, Cho J, DiCara D, Frazer S, Fuller GN, Gao J, Gehlenborg N, Haussler D, Heiman DI, Iype L, Jacobsen A, Ju Z, Katzman S, Kim H, Knijnenburg T, Kreisberg RB, Lawrence MS, Lee W, Leinonen K, Lin P, Ling S, Liu W, Liu Y, Liu Y, Lu Y, Mills G, Ng S, Noble MS, Paull E, Rao A, Reynolds S, Saksena G, Sanborn Z, Sander C, Schultz N, Senbabaoglu Y, Shen R, Shmulevich I, Sinha R, Stuart J, Sumer SO, Sun Y, Tasman N, Taylor BS, Voet D, Weinhold N, Weinstein JN, Yang D, Yoshihara K, Zheng S, Zhang W, Zou L, Abel T, Sadeghi S, Cohen ML, Eschbacher J, Hattab EM, Raghunathan A, Schniederjan MJ, Aziz D, Barnett G, Barrett W, Bigner DD, Boice L, Brewer C, Calatozzolo C, Campos B, Carlotti CG Jr, Chan TA, Cuppini L, Curley E, Cuzzubbo S, Devine K, DiMeco F, Duell R, Elder JB, Fehrenbach A, Finocchiaro G, Friedman W, Fulop J, Gardner J, Hermes B, Herold-Mende C, Jungk C, Kendler A, Lehman NL, Lipp E, Liu O, Mandt R, McGraw M, McLendon R, McPherson C, Neder L, Nguyen P, Noss A, Nunziata R, Ostrom QT, Palmer C, Perin A, Pollo B, Potapov A, Potapova O, Rathmell WK, Rotin D, Scarpace L, Schilero C, Senecal K, Shimmel K, Shurkhay V, Sifri S, Singh R, Sloan AE, Smolenski K, Staugaitis SM, Steele R, Thorne L, Tirapelli DP, Unterberg A, Vallurupalli M, Wang Y, Warnick R, Williams F, Wolinsky Y, Bell S, Rosenberg M, Stewart C, Huang F, Grimsby JL, Radenbaugh AJ, Zhang J (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade Gliomas. N Engl J Med 372(26):2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  CAS  Google Scholar 

  13. Bromberg JE, van den Bent MJ (2009) Oligodendrogliomas: molecular biology and treatment. Oncologist 14(2):155–163. https://doi.org/10.1634/theoncologist.2008-0248

    Article  CAS  PubMed  Google Scholar 

  14. Griffin CA, Burger P, Morsberger L, Yonescu R, Swierczynski S, Weingart JD, Murphy KM (2006) Identification of der(1,19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol 65(10):988–994. https://doi.org/10.1097/01.jnen.0000235122.98052.8f

    Article  PubMed  Google Scholar 

  15. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, Flynn H, Passe S, Felten S, Brown PD, Shaw EG, Buckner JC (2006) A t(1,19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66(20):9852–9861. https://doi.org/10.1158/0008-5472.CAN-06-1796

    Article  CAS  PubMed  Google Scholar 

  16. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, Grollman AP, He TC, He Y, Hruban RH, Jallo GI, Mandahl N, Meeker AK, Mertens F, Netto GJ, Rasheed BA, Riggins GJ, Rosenquist TA, Schiffman M, Shih Ie M, Theodorescu D, Torbenson MS, Velculescu VE, Wang TL, Wentzensen N, Wood LD, Zhang M, McLendon RE, Bigner DD, Kinzler KW, Vogelstein B, Papadopoulos N, Yan H (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 110(15):6021–6026. https://doi.org/10.1073/pnas.1303607110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122):957–959. https://doi.org/10.1126/science.1229259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  19. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. https://doi.org/10.1146/annurev.neuro.051508.135600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richardson WD, Young KM, Tripathi RB, McKenzie I (2011) NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70(4):661–673. https://doi.org/10.1016/j.neuron.2011.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, Um JY, Kim WK, Lee JK, Park J, Kim EH, Lee JH, Lee JH, Chung WS, Ju YS, Park SH, Chang JH, Kang SG, Lee JH (2018) Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560(7717):243–247. https://doi.org/10.1038/s41586-018-0389-3

    Article  CAS  PubMed  Google Scholar 

  22. Zong H, Parada LF, Baker SJ (2015) Cell of origin for malignant Gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol 7(5). https://doi.org/10.1101/cshperspect.a020610

  23. Bardella C, Al-Shammari AR, Soares L, Tomlinson I, O'Neill E, Szele FG (2018) The role of inflammation in subventricular zone cancer. Prog Neurobiol 170:37–52. https://doi.org/10.1016/j.pneurobio.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  24. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338(6110):1080–1084. https://doi.org/10.1126/science.1226929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Llaguno SA, Sun D, Pedraza AM, Vera E, Wang Z, Burns DK, Parada LF (2019) Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat Neurosci. https://doi.org/10.1038/s41593-018-0333-8

  26. Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Hanecker P, Ayers-Ringler J, Phillips J, Siu J, Lim DA, Vandenberg S, Stallcup W, Berger MS, Bergers G, Weiss WA, Petritsch C (2011) Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20(3):328–340. https://doi.org/10.1016/j.ccr.2011.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146(2):209–221. https://doi.org/10.1016/j.cell.2011.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, Goldenberg DD, Vandenberg SR, Nguyen KN, Yakovenko S, Ayers-Ringler J, Nishiyama A, Stallcup WB, Berger MS, Bergers G, McKnight TR, Goldman SA, Weiss WA (2010) Non-stem cell origin for oligodendroglioma. Cancer Cell 18(6):669–682. https://doi.org/10.1016/j.ccr.2010.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, Rodman C, Mount C, Filbin MG, Neftel C, Desai N, Nyman J, Izar B, Luo CC, Francis JM, Patel AA, Onozato ML, Riggi N, Livak KJ, Gennert D, Satija R, Nahed BV, Curry WT, Martuza RL, Mylvaganam R, Iafrate AJ, Frosch MP, Golub TR, Rivera MN, Getz G, Rozenblatt-Rosen O, Cahill DP, Monje M, Bernstein BE, Louis DN, Regev A, Suva ML (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539(7628):309–313. https://doi.org/10.1038/nature20123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bielle F, Ducray F, Mokhtari K, Dehais C, Adle-Biassette H, Carpentier C, Chanut A, Polivka M, Poggioli S, Rosenberg S, Giry M, Marie Y, Duyckaerts C, Sanson M, Figarella-Branger D, Idbaih A, Pola N (2016) Tumor cells with neuronal intermediate progenitor features define a subgroup of 1p/19q co-deleted anaplastic gliomas. Brain Pathol. https://doi.org/10.1111/bpa.12434

  31. Choi Y, Lee S, Kim K, Kim SH, Chung YJ, Lee C (2018) Studying cancer immunotherapy using patient-derived xenografts (PDXs) in humanized mice. Exp Mol Med 50(8):99. https://doi.org/10.1038/s12276-018-0115-0

    Article  CAS  PubMed Central  Google Scholar 

  32. Semenkow S, Li S, Kahlert UD, Raabe EH, Xu J, Arnold A, Janowski M, Oh BC, Brandacher G, Bulte JWM, Eberhart CG, Walczak P (2017) An immunocompetent mouse model of human glioblastoma. Oncotarget 8(37):61072–61082. https://doi.org/10.18632/oncotarget.17851

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheon DJ, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol 6:95–119. https://doi.org/10.1146/annurev.pathol.3.121806.154244

    Article  CAS  PubMed  Google Scholar 

  34. Day CP, Merlino G, Van Dyke T (2015) Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163(1):39–53. https://doi.org/10.1016/j.cell.2015.08.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T (2000) Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26(1):109–113. https://doi.org/10.1038/79075

    Article  CAS  PubMed  Google Scholar 

  36. Dhaliwal J, Lagace DC (2011) Visualization and genetic manipulation of adult neurogenesis using transgenic mice. Eur J Neurosci 33(6):1025–1036. https://doi.org/10.1111/j.1460-9568.2011.07600.x

    Article  PubMed  Google Scholar 

  37. Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8(2):119–130. https://doi.org/10.1016/j.ccr.2005.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R, Bronson RT, Chen JW, Weissleder R, Housman DE, Charest A (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci U S A 106(8):2712–2716. https://doi.org/10.1073/pnas.0813314106

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, Alvarez-Buylla A, Parada LF (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15(1):45–56. https://doi.org/10.1016/j.ccr.2008.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robinson JP, Vanbrocklin MW, McKinney AJ, Gach HM, Holmen SL (2011) Akt signaling is required for glioblastoma maintenance in vivo. Am J Cancer Res 1(2):155–167

    CAS  PubMed  Google Scholar 

  41. Howarth JL, Lee YB, Uney JB (2010) Using viral vectors as gene transfer tools (cell biology and toxicology special issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 26(1):1–20. https://doi.org/10.1007/s10565-009-9139-5

    Article  CAS  PubMed  Google Scholar 

  42. Orsulic S (2002) An RCAS-TVA-based approach to designer mouse models. Mamm Genome 13(10):543–547. https://doi.org/10.1007/s00335-002-4003-4

    Article  PubMed  Google Scholar 

  43. Moore LM, Holmes KM, Fuller GN, Zhang W (2011) Oncogene interactions are required for glioma development and progression as revealed by a tissue specific transgenic mouse model. Chin J Cancer 30(3):163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25(1):55–57. https://doi.org/10.1038/75596

    Article  CAS  PubMed  Google Scholar 

  45. Lentz TB, Gray SJ, Samulski RJ (2012) Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 48(2):179–188. https://doi.org/10.1016/j.nbd.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  46. Manfredsson FP (2016) Introduction to viral vectors and other delivery methods for gene therapy of the nervous system. Methods Mol Biol 1382:3–18. https://doi.org/10.1007/978-1-4939-3271-9_1

    Article  CAS  PubMed  Google Scholar 

  47. Zolotukhin I, Luo D, Gorbatyuk O, Hoffman B, Warrington K Jr, Herzog R, Harrison J, Cao O (2013) Improved Adeno-associated viral gene transfer to murine Glioma. J Genet Syndr Gene Ther 4(133). https://doi.org/10.4172/2157-7412.1000133

  48. Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ, Chen S (2017) AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci 20(10):1329–1341. https://doi.org/10.1038/nn.4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bloquel C, Fabre E, Bureau MF, Scherman D (2004) Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 6(Suppl 1):S11–S23. https://doi.org/10.1002/jgm.508

    Article  CAS  PubMed  Google Scholar 

  50. Bigey P, Bureau MF, Scherman D (2002) In vivo plasmid DNA electrotransfer. Curr Opin Biotechnol 13(5):443–447

    Article  CAS  PubMed  Google Scholar 

  51. Copeland NG, Jenkins NA (2010) Harnessing transposons for cancer gene discovery. Nat Rev Cancer 10(10):696–706. https://doi.org/10.1038/nrc2916

    Article  CAS  PubMed  Google Scholar 

  52. Lampreht Tratar U, Horvat S, Cemazar M (2018) Transgenic mouse models in Cancer Research. Front Oncol 8:268. https://doi.org/10.3389/fonc.2018.00268

    Article  PubMed  PubMed Central  Google Scholar 

  53. Koso H, Takeda H, Yew CC, Ward JM, Nariai N, Ueno K, Nagasaki M, Watanabe S, Rust AG, Adams DJ, Copeland NG, Jenkins NA (2012) Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells. Proc Natl Acad Sci U S A 109(44):E2998–E3007. https://doi.org/10.1073/pnas.1215899109

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bender AM, Collier LS, Rodriguez FJ, Tieu C, Larson JD, Halder C, Mahlum E, Kollmeyer TM, Akagi K, Sarkar G, Largaespada DA, Jenkins RB (2010) Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 70(9):3557–3565. https://doi.org/10.1158/0008-5472.CAN-09-4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sumiyoshi K, Koso H, Watanabe S (2018) Spontaneous development of intratumoral heterogeneity in a transposon-induced mouse model of glioma. Cancer Sci 109(5):1513–1523. https://doi.org/10.1111/cas.13579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  57. Balvers RK, Kleijn A, Kloezeman JJ, French PJ, Kremer A, van den Bent MJ, Dirven CM, Leenstra S, Lamfers ML (2013) Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix-associated gene modules. Neuro-Oncology 15(12):1684–1695. https://doi.org/10.1093/neuonc/not116

    Article  PubMed  PubMed Central  Google Scholar 

  58. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283. https://doi.org/10.1371/journal.pbio.0030283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576. https://doi.org/10.1002/jnr.490350513

    Article  CAS  PubMed  Google Scholar 

  60. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403. https://doi.org/10.1016/j.ccr.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  61. Piaskowski S, Bienkowski M, Stoczynska-Fidelus E, Stawski R, Sieruta M, Szybka M, Papierz W, Wolanczyk M, Jaskolski DJ, Liberski PP, Rieske P (2011) Glioma cells showing IDH1 mutation cannot be propagated in standard cell culture conditions. Br J Cancer 104(6):968–970. https://doi.org/10.1038/bjc.2011.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kelly JJ, Blough MD, Stechishin OD, Chan JA, Beauchamp D, Perizzolo M, Demetrick DJ, Steele L, Auer RN, Hader WJ, Westgate M, Parney IF, Jenkins R, Cairncross JG, Weiss S (2010) Oligodendroglioma cell lines containing t(1,19)(q10;p10). Neuro-Oncology 12(7):745–755. https://doi.org/10.1093/neuonc/noq031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luchman HA, Stechishin OD, Dang NH, Blough MD, Chesnelong C, Kelly JJ, Nguyen SA, Chan JA, Weljie AM, Cairncross JG, Weiss S (2012) An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro-Oncology 14(2):184–191. https://doi.org/10.1093/neuonc/nor207

    Article  CAS  PubMed  Google Scholar 

  64. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S, Travins J, Weiss S, Looper R, Ligon KL, Verhaak RG, Yan H, Kaelin WG Jr (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483(7390):484–488. https://doi.org/10.1038/nature10898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, Tsoi J, Clark O, Oldrini B, Komisopoulou E, Kunii K, Pedraza A, Schalm S, Silverman L, Miller A, Wang F, Yang H, Chen Y, Kernytsky A, Rosenblum MK, Liu W, Biller SA, Su SM, Brennan CW, Chan TA, Graeber TG, Yen KE, Mellinghoff IK (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340(6132):626–630. https://doi.org/10.1126/science.1236062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klink B, Miletic H, Stieber D, Huszthy PC, Valenzuela JA, Balss J, Wang J, Schubert M, Sakariassen PO, Sundstrom T, Torsvik A, Aarhus M, Mahesparan R, von Deimling A, Kaderali L, Niclou SP, Schrock E, Bjerkvig R, Nigro JM (2013) A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1. PLoS One 8(3):e59773. https://doi.org/10.1371/journal.pone.0059773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turcan S, Makarov V, Taranda J, Wang Y, Fabius AWM, Wu W, Zheng Y, El-Amine N, Haddock S, Nanjangud G, LeKaye HC, Brennan C, Cross J, Huse JT, Kelleher NL, Osten P, Thompson CB, Chan TA (2018) Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet 50(1):62–72. https://doi.org/10.1038/s41588-017-0001-z

    Article  PubMed  Google Scholar 

  68. Claes A, Schuuring J, Boots-Sprenger S, Hendriks-Cornelissen S, Dekkers M, van der Kogel AJ, Leenders WP, Wesseling P, Jeuken JW (2008) Phenotypic and genotypic characterization of orthotopic human glioma models and its relevance for the study of anti-glioma therapy. Brain Pathol 18(3):423–433. https://doi.org/10.1111/j.1750-3639.2008.00141.x

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27(4):599–608. https://doi.org/10.1093/annonc/mdw013

    Article  CAS  PubMed  Google Scholar 

  70. Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, Cairns RA, McCracken S, Wakeham A, Haight J, Ten AY, Snow B, Ueda T, Inoue S, Yamamoto K, Ko M, Rao A, Yen KE, Su SM, Mak TW (2012) D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26(18):2038–2049. https://doi.org/10.1101/gad.198200.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bardella C, Al-Dalahmah O, Krell D, Brazauskas P, Al-Qahtani K, Tomkova M, Adam J, Serres S, Lockstone H, Freeman-Mills L, Pfeffer I, Sibson N, Goldin R, Schuster-Boeckler B, Pollard PJ, Soga T, McCullagh JS, Schofield CJ, Mulholland P, Ansorge O, Kriaucionis S, Ratcliffe PJ, Szele FG, Tomlinson I (2016) Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30(4):578–594. https://doi.org/10.1016/j.ccell.2016.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pirozzi CJ, Carpenter AB, Waitkus MS, Wang CY, Zhu H, Hansen LJ, Chen LH, Greer PK, Feng J, Wang Y, Bock CB, Fan P, Spasojevic I, McLendon RE, Bigner DD, He Y, Yan H (2017) Mutant IDH1 disrupts the mouse subventricular zone and alters brain tumor progression. Mol Cancer Res 15(5):507–520. https://doi.org/10.1158/1541-7786.MCR-16-0485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Philip B, Yu DX, Silvis MR, Shin CH, Robinson JP, Robinson GL, Welker AE, Angel SN, Tripp SR, Sonnen JA, VanBrocklin MW, Gibbons RJ, Looper RE, Colman H, Holmen SL (2018) Mutant IDH1 promotes glioma formation in vivo. Cell Rep 23(5):1553–1564. https://doi.org/10.1016/j.celrep.2018.03.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nunez FJ, Mendez FM, Kadiyala P, Alghamri MS, Savelieff MG, Garcia-Fabiani MB, Haase S, Koschmann C, Calinescu AA, Kamran N, Saxena M, Patel R, Carney S, Guo MZ, Edwards M, Ljungman M, Qin T, Sartor MA, Tagett R, Venneti S, Brosnan-Cashman J, Meeker A, Gorbunova V, Zhao L, Kremer DM, Zhang L, Lyssiotis CA, Jones L, Herting CJ, Ross JL, Hambardzumyan D, Hervey-Jumper S, Figueroa ME, Lowenstein PR, Castro MG (2019) IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Sci Transl Med 11(479). https://doi.org/10.1126/scitranslmed.aaq1427

  75. Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, Hanke M, Margineantu DH, Rao A, Bolouri H, Delrow J, Hockenbery D, Houghton AM, Holland EC (2017) Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev 31(8):774–786. https://doi.org/10.1101/gad.294991.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Griveau A, Seano G, Shelton SJ, Kupp R, Jahangiri A, Obernier K, Krishnan S, Lindberg OR, Yuen TJ, Tien AC, Sabo JK, Wang N, Chen I, Kloepper J, Larrouquere L, Ghosh M, Tirosh I, Huillard E, Alvarez-Buylla A, Oldham MC, Persson AI, Weiss WA, Batchelor TT, Stemmer-Rachamimov A, Suva ML, Phillips JJ, Aghi MK, Mehta S, Jain RK, Rowitch DH (2018) A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33(5):874–889. e877. https://doi.org/10.1016/j.ccell.2018.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15(15):1913–1925. https://doi.org/10.1101/gad.903001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Appolloni I, Calzolari F, Tutucci E, Caviglia S, Terrile M, Corte G, Malatesta P (2009) PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors. Int J Cancer 124(10):2251–2259. https://doi.org/10.1002/ijc.24206

    Article  CAS  PubMed  Google Scholar 

  79. Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L (2009) Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene 28(23):2266–2275. https://doi.org/10.1038/onc.2009.76

    Article  CAS  PubMed  Google Scholar 

  80. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51(2):187–199. https://doi.org/10.1016/j.neuron.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  81. Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S, Bruce JN, Canoll P (2011) Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One 6(5):e20041. https://doi.org/10.1371/journal.pone.0020041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5(3–4):57–67. https://doi.org/10.1017/S1740925X09990354

    Article  PubMed  PubMed Central  Google Scholar 

  83. Moyon S, Dubessy AL, Aigrot MS, Trotter M, Huang JK, Dauphinot L, Potier MC, Kerninon C, Melik Parsadaniantz S, Franklin RJ, Lubetzki C (2015) Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci Off J Soc Neurosci 35(1):4–20. https://doi.org/10.1523/JNEUROSCI.0849-14.2015

    Article  CAS  Google Scholar 

  84. Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63(7):1589–1595

    CAS  PubMed  Google Scholar 

  85. Horbinski C, Hobbs J, Cieply K, Dacic S, Hamilton RL (2011) EGFR expression stratifies oligodendroglioma behavior. Am J Pathol 179(4):1638–1644. https://doi.org/10.1016/j.ajpath.2011.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Simon-Carrasco L, Jimenez G, Barbacid M, Drosten M (2018) The Capicua tumor suppressor: a gatekeeper of Ras signaling in development and cancer. Cell Cycle 17(6):702–711. https://doi.org/10.1080/15384101.2018.1450029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lu HC, Tan Q, Rousseaux MW, Wang W, Kim JY, Richman R, Wan YW, Yeh SY, Patel JM, Liu X, Lin T, Lee Y, Fryer JD, Han J, Chahrour M, Finnell RH, Lei Y, Zurita-Jimenez ME, Ahimaz P, Anyane-Yeboa K, Van Maldergem L, Lehalle D, Jean-Marcais N, Mosca-Boidron AL, Thevenon J, Cousin MA, Bro DE, Lanpher BC, Klee EW, Alexander N, Bainbridge MN, Orr HT, Sillitoe RV, Ljungberg MC, Liu Z, Schaaf CP, Zoghbi HY (2017) Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nat Genet 49(4):527–536. https://doi.org/10.1038/ng.3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lam YC, Bowman AB, Jafar-Nejad P, Lim J, Richman R, Fryer JD, Hyun ED, Duvick LA, Orr HT, Botas J, Zoghbi HY (2006) ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 127(7):1335–1347. https://doi.org/10.1016/j.cell.2006.11.038

    Article  CAS  PubMed  Google Scholar 

  89. Weissmann S, Cloos PA, Sidoli S, Jensen ON, Pollard S, Helin K (2018) The tumor suppressor CIC directly regulates MAPK pathway genes via histone deacetylation. Cancer Res 78(15):4114–4125. https://doi.org/10.1158/0008-5472.CAN-18-0342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, Gotoh T, Motoi T, Fukayama M, Aburatani H, Takizawa T, Nakamura T (2006) Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet 15(13):2125–2137. https://doi.org/10.1093/hmg/ddl136

    Article  CAS  PubMed  Google Scholar 

  91. Dissanayake K, Toth R, Blakey J, Olsson O, Campbell DG, Prescott AR, MacKintosh C (2011) ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicua. Biochem J 433(3):515–525. https://doi.org/10.1042/BJ20101562

    Article  CAS  PubMed  Google Scholar 

  92. Jimenez G, Shvartsman SY, Paroush Z (2012) The Capicua repressor—a general sensor of RTK signaling in development and disease. J Cell Sci 125(Pt 6):1383–1391. https://doi.org/10.1242/jcs.092965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bunda S, Heir P, Metcalf J, Li ASC, Agnihotri S, Pusch S, Yasin M, Li M, Burrell K, Mansouri S, Singh O, Wilson M, Alamsahebpour A, Nejad R, Choi B, Kim D, von Deimling A, Zadeh G, Aldape K (2019) CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun 10(1):661. https://doi.org/10.1038/s41467-018-08087-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang R, Chen LH, Hansen LJ, Carpenter AB, Moure CJ, Liu H, Pirozzi CJ, Diplas BH, Waitkus MS, Greer PK, Zhu H, McLendon RE, Bigner DD, He Y, Yan H (2017) Cic loss promotes gliomagenesis via aberrant neural stem cell proliferation and differentiation. Cancer Res 77(22):6097–6108. https://doi.org/10.1158/0008-5472.CAN-17-1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang L, Paul S, Trieu KG, Dent LG, Froldi F, Fores M, Webster K, Siegfried KR, Kondo S, Harvey K, Cheng L, Jimenez G, Shvartsman SY, Veraksa A (2016) Minibrain and wings apart control organ growth and tissue patterning through down-regulation of Capicua. Proc Natl Acad Sci U S A 113(38):10583–10588. https://doi.org/10.1073/pnas.1609417113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, Halder G, Hamaratoglu F (2017) Hippo reprograms the transcriptional response to Ras signaling. Dev Cell 42(6):667–680. e664. https://doi.org/10.1016/j.devcel.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  97. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. https://doi.org/10.1126/science.1133427

    Article  CAS  PubMed  Google Scholar 

  98. Okimoto RA, Breitenbuecher F, Olivas VR, Wu W, Gini B, Hofree M, Asthana S, Hrustanovic G, Flanagan J, Tulpule A, Blakely CM, Haringsma HJ, Simmons AD, Gowen K, Suh J, Miller VA, Ali S, Schuler M, Bivona TG (2017) Inactivation of Capicua drives cancer metastasis. Nat Genet 49(1):87–96. https://doi.org/10.1038/ng.3728

    Article  CAS  PubMed  Google Scholar 

  99. Simon-Carrasco L, Grana O, Salmon M, Jacob HKC, Gutierrez A, Jimenez G, Drosten M, Barbacid M (2017) Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma. Genes Dev 31(14):1456–1468. https://doi.org/10.1101/gad.300244.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gleize V, Alentorn A, Connen de Kerillis L, Labussiere M, Nadaradjane A, Mundwiller E, Ottolenghi C, Mangesius S, Rahimian A, Ducray F, Behalf Of The Pola Network O, Mokhtari K, Villa C, Sanson M (2015) CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas. Ann Neurol. https://doi.org/10.1002/ana.24443

  101. Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, Rodriguez FJ, Cahill DP, McLendon R, Riggins G, Velculescu VE, Oba-Shinjo SM, Marie SK, Vogelstein B, Bigner D, Yan H, Papadopoulos N, Kinzler KW (2011) Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333(6048):1453–1455. https://doi.org/10.1126/science.1210557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, Birol I, Chesnelong C, Chiu R, Chuah E, Corbett R, Docking R, Firme M, Hirst M, Jackman S, Karsan A, Li H, Louis DN, Maslova A, Moore R, Moradian A, Mungall KL, Perizzolo M, Qian J, Roldan G, Smith EE, Tamura-Wells J, Thiessen N, Varhol R, Weiss S, Wu W, Young S, Zhao Y, Mungall AJ, Jones SJ, Morin GB, Chan JA, Cairncross JG, Marra MA (2012) Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol 226(1):7–16. https://doi.org/10.1002/path.2995

    Article  CAS  PubMed  Google Scholar 

  103. Wesseling P, van den Bent M, Perry A (2015) Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):809–827. https://doi.org/10.1007/s00401-015-1424-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fores M, Simon-Carrasco L, Ajuria L, Samper N, Gonzalez-Crespo S, Drosten M, Barbacid M, Jimenez G (2017) A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer. PLoS Genet 13(3):e1006622. https://doi.org/10.1371/journal.pgen.1006622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ahmad ST, Rogers AD, Chen MJ, Dixit R, Adnani L, Frankiw LS, Lawn SO, Blough MD, Alshehri M, Wu W, Marra MA, Robbins SM, Cairncross JG, Schuurmans C, Chan JA (2019) Capicua regulates neural stem cell proliferation and lineage specification through control of Ets factors. Nat Commun 10(1):2000. https://doi.org/10.1038/s41467-019-09949-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Debaize L, Troadec MB (2019) The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell Mol Life Sci 76(2):259–281. https://doi.org/10.1007/s00018-018-2933-6

    Article  CAS  PubMed  Google Scholar 

  107. Zhou W, Chung YJ, Parrilla Castellar ER, Zheng Y, Chung HJ, Bandle R, Liu J, Tessarollo L, Batchelor E, Aplan PD, Levens D (2016) Far upstream element binding protein plays a crucial role in embryonic development, Hematopoiesis, and stabilizing Myc expression levels. Am J Pathol 186(3):701–715. https://doi.org/10.1016/j.ajpath.2015.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hwang I, Cao D, Na Y, Kim DY, Zhang T, Yao J, Oh H, Hu J, Zheng H, Yao Y, Paik J (2018) Far upstream element-binding protein 1 regulates LSD1 alternative splicing to promote terminal differentiation of neural progenitors. Stem Cell Reports 10(4):1208–1221. https://doi.org/10.1016/j.stemcr.2018.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. van der Weyden L, Bradley A (2006) Mouse chromosome engineering for modeling human disease. Annu Rev Genomics Hum Genet 7:247–276. https://doi.org/10.1146/annurev.genom.7.080505.115741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu MY, Nemes A, Zhou QG (2018) The emerging roles for telomerase in the central nervous system. Front Mol Neurosci 11:160. https://doi.org/10.3389/fnmol.2018.00160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chittaranjan S, Chan S, Yang C, Yang KC, Chen V, Moradian A, Firme M, Song J, Go NE, Blough MD, Chan JA, Cairncross JG, Gorski SM, Morin GB, Yip S, Marra MA (2014) Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity. Oncotarget 5(17):7960–7979. https://doi.org/10.18632/oncotarget.2401

    Article  PubMed  PubMed Central  Google Scholar 

  112. Labreche K, Simeonova I, Kamoun A, Gleize V, Chubb D, Letouze E, Riazalhosseini Y, Dobbins SE, Elarouci N, Ducray F, de Reynies A, Zelenika D, Wardell CP, Frampton M, Saulnier O, Pastinen T, Hallout S, Figarella-Branger D, Dehais C, Idbaih A, Mokhtari K, Delattre JY, Huillard E, Mark Lathrop G, Sanson M, Houlston RS (2015) TCF12 is mutated in anaplastic oligodendroglioma. Nat Commun 6:7207. https://doi.org/10.1038/ncomms8207

    Article  CAS  PubMed  Google Scholar 

  113. Delgado-Lopez PD, Corrales-Garcia EM, Martino J, Lastra-Aras E, Duenas-Polo MT (2017) Diffuse low-grade glioma: a review on the new molecular classification, natural history and current management strategies. Clin Transl Oncol 19(8):931–944. https://doi.org/10.1007/s12094-017-1631-4

    Article  CAS  PubMed  Google Scholar 

  114. Pallud J, Capelle L, Taillandier L, Badoual M, Duffau H, Mandonnet E (2013) The silent phase of diffuse low-grade gliomas. Is it when we missed the action? Acta Neurochir 155(12):2237–2242. https://doi.org/10.1007/s00701-013-1886-7

    Article  PubMed  Google Scholar 

  115. Bielle F, Ducray F, Mokhtari K, Dehais C, Adle-Biassette H, Carpentier C, Chanut A, Polivka M, Poggioli S, Rosenberg S, Giry M, Marie Y, Duyckaerts C, Sanson M, Figarella-Branger D, Idbaih A, Pola N (2017) Tumor cells with neuronal intermediate progenitor features define a subgroup of 1p/19q co-deleted anaplastic gliomas. Brain Pathol 27(5):567–579. https://doi.org/10.1111/bpa.12434

    Article  CAS  PubMed  Google Scholar 

  116. Simeonova I, Huillard E (2014) In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cell Mol Life Sci 71(20):4007–4026. https://doi.org/10.1007/s00018-014-1675-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cuddapah VA, Robel S, Watkins S, Sontheimer H (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15(7):455–465. https://doi.org/10.1038/nrn3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910. https://doi.org/10.1016/j.cell.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  119. Lagerweij T, Dusoswa SA, Negrean A, Hendrikx EML, de Vries HE, Kole J, Garcia-Vallejo JJ, Mansvelder HD, Vandertop WP, Noske DP, Tannous BA, Musters RJP, van Kooyk Y, Wesseling P, Zhao XW, Wurdinger T (2017) Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment. Angiogenesis 20(4):533–546. https://doi.org/10.1007/s10456-017-9565-6

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pencheva N, de Gooijer MC, Vis DJ, Wessels LFA, Wurdinger T, van Tellingen O, Bernards R (2017) Identification of a druggable pathway controlling glioblastoma invasiveness. Cell Rep 20(1):48–60. https://doi.org/10.1016/j.celrep.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  121. Marques-Torrejon MA, Gangoso E, Pollard SM (2018) Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture. Dis Model Mech 11(2). https://doi.org/10.1242/dmm.031435

  122. Marton RM, Miura Y, Sloan SA, Li Q, Revah O, Levy RJ, Huguenard JR, Pasca SP (2019) Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci 22(3):484–491. https://doi.org/10.1038/s41593-018-0316-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ogawa J, Pao GM, Shokhirev MN, Verma IM (2018) Glioblastoma model using human cerebral organoids. Cell Rep 23(4):1220–1229. https://doi.org/10.1016/j.celrep.2018.03.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci Off J Soc Neurosci 26(25):6781–6790. https://doi.org/10.1523/JNEUROSCI.0514-06.2006

    Article  CAS  Google Scholar 

  125. Glasgow SM, Zhu W, Stolt CC, Huang TW, Chen F, LoTurco JJ, Neul JL, Wegner M, Mohila C, Deneen B (2014) Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nat Neurosci 17(10):1322–1329. https://doi.org/10.1038/nn.3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Giorgios Solomou, Marc Sanson, and Jean-Philippe Hugnot for constructive feedbacks on the manuscript. We thank Karima Mokhtari for providing histological examples in Fig. 1.1. Research in the Huillard team is funded by the Ligue Nationale contre le Cancer, Fondation ARC, OligoNation and Operation OligoCure associations. We acknowledge the contribution of SiRIC CURAMUS (INCA-DGOS-Inserm_12560) which is financially supported by the French National Cancer Institute, the French Ministry of Solidarity and Health, and Inserm. Bardella team is funded by Cancer Research UK and OligoNation and Operation OligoCure associations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Huillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Archontidi, S., Joppé, S., Khenniche, Y., Bardella, C., Huillard, E. (2021). Mouse Models of Diffuse Lower-Grade Gliomas of the Adult. In: Seano, G. (eds) Brain Tumors. Neuromethods, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0856-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0856-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0855-5

  • Online ISBN: 978-1-0716-0856-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics