Skip to main content

Introduction to Viral Vectors and Other Delivery Methods for Gene Therapy of the Nervous System

  • Protocol
Gene Therapy for Neurological Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

The use of gene therapy in neuroscience research has become common place in many laboratories across the world. However, contrary to common belief, the practical application of viral or non-viral gene therapy is not as straightforward as it may seem. All too often investigators see their experiments fail due to low-quality third-party vectors or due to a lack of knowledge regarding the proper use of these tools. For example, researchers often find themselves performing experiments using the wrong methodology (e.g., using the wrong type of vector or mishandling the vector to the point where the efficacy is significantly reduced) resulting in experiments that potentially fail to accurately answer a hypothesis, or the generation of irreproducible data. Thus, it is important for investigators that seek to utilize gene therapy approaches to gain a basic understanding of how to apply this technology. This includes understanding how to appropriately design and execute an experiment, understanding various delivery vehicles (e.g., what virus to use), delivery methods (e.g., systemic versus intracranial injections), what expression system to use, and the time course involved with a particular expression system. This chapter is intended to present an overview of this fundamental knowledge, providing the researcher with a decision tree upon which to build their gene therapy experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manfredsson FP, Mandel RJ (2010) Development of gene therapy for neurological disorders. Discov Med 9:204–211

    PubMed  Google Scholar 

  2. Benskey MJ et al (2015) Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants. Mol Ther 23:488–500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Burger C et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    Article  CAS  PubMed  Google Scholar 

  4. Evans JT, Garcia JV (2000) Lentivirus vector mobilization and spread by human immunodeficiency virus. Hum Gene Ther 11:2331–2339

    Article  CAS  PubMed  Google Scholar 

  5. Hacein-Bey-Abina S et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  PubMed  Google Scholar 

  6. Yanez-Munoz RJ et al (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12:348–353

    Article  CAS  PubMed  Google Scholar 

  7. Cannon JR, Sew T, Montero L, Burton EA, Greenamyre JT (2011) Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Exp Neurol 228:41–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Liehl B et al (2007) Simian immunodeficiency virus vector pseudotypes differ in transduction efficiency and target cell specificity in brain. Gene Ther 14:1330–1343

    CAS  PubMed  Google Scholar 

  9. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5:528–537

    Article  CAS  PubMed  Google Scholar 

  10. Manfredsson FP, Mandel RJ (2011) The development of flexible lentiviral vectors for gene transfer in the CNS. Exp Neurol 229:201–206

    Article  CAS  PubMed  Google Scholar 

  11. Alba R, Bosch A, Chillon M (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12 Suppl 1: S18–S27

    Google Scholar 

  12. Semkova I et al (2002) Autologous transplantation of genetically modified iris pigment epithelial cells: a promising concept for the treatment of age-related macular degeneration and other disorders of the eye. Proc Natl Acad Sci U S A 99:13090–13095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Soudais C, Skander N, Kremer EJ (2004) Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. FASEB J 18:391–393

    CAS  PubMed  Google Scholar 

  14. Lewis TB, Glasgow JN, Harms AS, Standaert DG, Curiel DT (2014) Fiber-modified adenovirus for central nervous system Parkinson’s disease gene therapy. Viruses 6:3293–3310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sakae M et al (2008) Highly efficient in vivo gene transfection by plasmid/PEI complexes coated by anionic PEG derivatives bearing carboxyl groups and RGD peptide. Biomed Pharmacother 62:448–453

    Article  CAS  PubMed  Google Scholar 

  16. Portales-Casamar E et al (2010) A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proc Natl Acad Sci U S A 107:16589–16594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Akerblom M et al (2013) Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun 4:1770

    Article  PubMed  Google Scholar 

  18. Saunders A, Johnson CA, Sabatini BL (2012) Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front Neural Circuits 6:47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chakrabarty P et al (2013) Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One 8, e67680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Towne C, Raoul C, Schneider BL, Aebischer P (2008) Systemic AAV6 delivery mediating RNA interference against SOD1: neuromuscular transduction does not alter disease progression in fALS mice. Mol Ther 16:1018–1025

    Article  CAS  PubMed  Google Scholar 

  21. Bevan AK et al (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19:1971–1980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24:198–204

    Article  CAS  PubMed  Google Scholar 

  23. Gray SJ et al (2010) Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood–brain barrier (BBB). Mol Ther 18:570–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Manfredsson FP, Okun MS, Mandel RJ (2009) Gene therapy for neurological disorders: challenges and future prospects for the use of growth factors for the treatment of Parkinson's disease. Curr Gene Ther 9:375–388

    Article  CAS  PubMed  Google Scholar 

  25. Manfredsson FP et al (2009) Tight Long-term dynamic doxycycline responsive nigrostriatal GDNF using a single rAAV vector. Mol Ther 17:1857–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kitada T et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  27. Manfredsson FP et al (2007) rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson's disease. Exp Neurol 207:289–301

    Article  CAS  PubMed  Google Scholar 

  28. Vercammen L et al (2006) Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson's disease. Mol Ther 14:716–723

    Article  CAS  PubMed  Google Scholar 

  29. Gombash SE et al (2013) Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system. PLoS One 8, e81426

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kanaan NM, Manfredsson FP (2012) Loss of functional alpha-synuclein: a toxic event in Parkinson's disease? Journal of Parkinson's disease 2:249–267

    CAS  PubMed  Google Scholar 

  31. Ramaswamy S, Kordower JH (2012) Gene therapy for Huntington's disease. Neurobiol Dis 48:243–254

    Article  CAS  PubMed  Google Scholar 

  32. Boudreau RL et al (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol Ther 17:1053–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. McBride JL et al (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol Ther 19:2152–2162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Grimm D et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  CAS  PubMed  Google Scholar 

  35. Gorbatyuk OS et al (2010) In vivo RNAi-mediated alpha-synuclein silencing induces nigrostriatal degeneration. Mol Ther 18:1450–1457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chan F, Hauswirth WW, Wensel TG, Wilson JH (2011) Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice. Nucleic Acids Res 39:5955–5966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  38. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  39. Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462:15–24

    Article  CAS  PubMed  Google Scholar 

  40. Szymczak AL et al (2004) Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594

    Article  CAS  PubMed  Google Scholar 

  41. Manfredsson FP, Bloom DC, Mandel RJ (2012) Regulated protein expression for in vivo gene therapy for neurological disorders: progress, strategies, and issues. Neurobiol Dis 48:212–221

    Article  CAS  PubMed  Google Scholar 

  42. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wachs FP et al (2006) Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 65:358–370

    Article  CAS  PubMed  Google Scholar 

  44. Quintino L et al (2013) Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson's disease. Mol Ther 21:2169–2180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tang Y, Jackson M, Qian K, Phillips MI (2002) Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension 39:695–698

    Article  CAS  PubMed  Google Scholar 

  46. Hurttila H et al (2008) Oxidative stress-inducible lentiviral vectors for gene therapy. Gene Ther 15:1271–1279

    Article  CAS  PubMed  Google Scholar 

  47. Klein RL et al (2006) Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol Ther 13:517–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Grabinski TM, Kneynsberg A, Manfredsson FP, Kanaan NM (2015) A Method for Combining RNAscope In Situ Hybridization with Immunohistochemistry in Thick Free-Floating Brain Sections and Primary Neuronal Cultures. PLoS One 10, e0120120

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredric P. Manfredsson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Manfredsson, F.P. (2016). Introduction to Viral Vectors and Other Delivery Methods for Gene Therapy of the Nervous System. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics