Skip to main content

Use of Epigenetic Cues and Mechanical Stimuli to Generate Blastocyst-Like Structures from Mammalian Skin Dermal Fibroblasts

  • Protocol
  • First Online:
Embryo Models In Vitro

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2767))

Abstract

Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.

Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined “epiBlastoids,” whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu L, Warmflash A (2021) Self-organized signaling in stem cell models of embryos. Stem Cell Reports 16:1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pennarossa G, Gandolfi F, Brevini TAL (2021) Biomechanical signaling in oocytes and parthenogenetic cells. Front Cell Dev Biol 9:1–7

    Article  Google Scholar 

  5. Harrison SE, Sozen B, Christodoulou N, et al (2017) Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science (80-) 356

    Google Scholar 

  6. Weatherbee BAT, Cui T, Zernicka-Goetz M (2021) Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol 474:91–99

    Article  CAS  PubMed  Google Scholar 

  7. Sozen B, Jorgensen V, Weatherbee BAT et al (2021) Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat Commun 12:1–13

    Article  Google Scholar 

  8. Yanagida A, Spindlow D, Nichols J, et al (2021) Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28:1016–1022.e4

    Google Scholar 

  9. Yu L, Wei Y, Duan J et al (2021) Blastocyst-like structures generated from human pluripotent stem cells. Nature 591(7851):620–626

    Article  CAS  PubMed  Google Scholar 

  10. Nicolas P, Etoc F, Brivanlou AH (2021) The ethics of human-embryoids model: a call for consistency. J Mol Med 99:569–579

    Article  PubMed  Google Scholar 

  11. Brevini TAL, Pennarossa G, Maffei S et al (2012) Pluripotency network in porcine embryos and derived cell lines. Reprod Domest Anim 47:86–91

    Article  PubMed  Google Scholar 

  12. Gandolfi F, Arcuri S, Pennarossa G et al (2019) New tools for cell reprogramming and conversion: possible applications to livestock. Anim Reprod 16(3):475–484

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pennarossa G, Gandolfi F, Brevini TAL (2020) All roads lead to Rome: the many ways to pluripotency. J Assist Reprod Genet 37:1029–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brevini TAL, Pennarossa G, Manzoni EFM et al (2016) The quest for an effective and safe personalized cell therapy using epigenetic tools. Clin Epigenetics 8:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amadei G, Lau KYC, Jonghe J De, et al (2021) Inducible stem-cell-derived embryos capture mouse morphogenetic events in vitro. Dev Cell 56:366–382.e9

    Google Scholar 

  16. Bao M, Cornwall-Scoones J, Zernicka-Goetz M (2022) Stem-cell-based human and mouse embryo models. Curr Opin Genet Dev 76:101970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu X, Tan JP, Schröder J et al (2021) Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591:627–632

    Article  CAS  PubMed  Google Scholar 

  18. Shao L, Wu WS (2010) Gene-delivery systems for iPS cell generation. Expert Opin Biol Ther 10:231–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pennarossa G, Maffei S, Campagnol M et al (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A 110:8948–8953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pennarossa G, Maffei S, Campagnol M et al (2014) Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev Reports 10:31–43

    Article  CAS  Google Scholar 

  21. Brevini TAL, Pennarossa G, Rahman MM et al (2014) Morphological and molecular changes of human granulosa cells exposed to 5-Azacytidine and addressed toward muscular differentiation. Stem Cell Rev Reports 10:633–642

    Article  CAS  Google Scholar 

  22. Mirakhori F, Zeynali B, Kiani S et al (2015) Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J 17:153–158

    PubMed  PubMed Central  Google Scholar 

  23. Tan SJ, Fang JY, Wu Y et al (2015) Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation. Sci Rep 5:16333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brevini TAL, Pennarossa G, Acocella F et al (2016) Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Vet J 211:52–56

    Article  CAS  PubMed  Google Scholar 

  25. Chandrakanthan V, Yeola A, Kwan JC et al (2016) Pdgf-ab and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci U S A 113:E2306–E2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manzoni EFM, Pennarossa G, DeEguileor M et al (2016) 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep 6:37017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pennarossa G, Santoro R, Manzoni EFM et al (2018) Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Rev Reports 14:398–411

    Article  CAS  Google Scholar 

  28. Pennarossa G, Manzoni EFM, Ledda S et al (2019) Use of a PTFE micro-bioreactor to promote 3D cell rearrangement and maintain high plasticity in epigenetically erased fibroblasts. Stem Cell Rev Reports 15:82–92

    Article  CAS  Google Scholar 

  29. Pennarossa G, Arcuri S, De Iorio T et al (2023) Combination of epigenetic erasing and mechanical cues to generate human epiBlastoids from adult dermal fibroblasts. J Assist Reprod Genet. https://doi.org/10.1007/s10815-023-02773-4

  30. Vining KH, Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18:728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matamoro-Vidal A, Levayer R (2019) Multiple influences of mechanical forces on cell competition. Curr Biol 29:R762–R774

    Article  CAS  PubMed  Google Scholar 

  32. Yim EKF, Sheetz MP (2012) Force-dependent cell signaling in stem cell differentiation. Stem Cell Res Ther 3(5):41

    Google Scholar 

  33. Kumar A, Placone JK, Engler AJ (2017) Understanding the extracellular forces that determine cell fate and maintenance. Development 144:4261–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bissell MJ, Rizki A, Mian IS (2003) Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 15:753–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  CAS  PubMed  Google Scholar 

  36. Pennarossa G, Iorio T De, Gandolfi F, et al (2022) Impact of aging on the ovarian extracellular matrix and derived 3D scaffolds. Nanomaterials (Basel) 12:345

    Google Scholar 

  37. Pennarossa G, Iorio T De, Gandolfi F, et al (2021) Ovarian decellularized bioscaffolds provide an optimal microenvironment for cell growth and differentiation in vitro. Cells 10:1–19

    Google Scholar 

  38. Pennarossa G, Ghiringhelli M, Gandolfi F et al (2021) Creation of a bioengineered ovary: isolation of female germline stem cells for the repopulation of a decellularized ovarian bioscaffold. Methods Mol Biol 2273:139–149

    Article  CAS  PubMed  Google Scholar 

  39. Arcuri S, Gandolfi F, Somigliana E et al (2021) A two-step protocol to erase human skin fibroblasts and convert them into trophoblast-like cells. Methods Mol Biol 2273:151–158

    Article  CAS  PubMed  Google Scholar 

  40. Arcuri S, Pennarossa G, Gandolfi F et al (2021) Generation of trophoblast-like cells from hypomethylated porcine adult dermal fibroblasts. Front Vet Sci 8:1–10

    Article  Google Scholar 

  41. Pennarossa G, Ledda S, Arcuri S et al (2020) A two-step strategy that combines epigenetic modification and biomechanical cues to generate mammalian pluripotent cells. J Vis Exp:1–22

    Google Scholar 

Download references

Acknowledgments

This work was supported by Carraresi Foundation, PSR2021, and HORIZON-WIDERA-2021 project n#101079349 (OH-Boost). Authors are members of the Trans-COST Actions Taskforce on Covid-19.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arcuri, S., Pennarossa, G., Ledda, S., Gandolfi, F., Brevini, T.A.L. (2023). Use of Epigenetic Cues and Mechanical Stimuli to Generate Blastocyst-Like Structures from Mammalian Skin Dermal Fibroblasts. In: Zernicka-Goetz, M., Turksen, K. (eds) Embryo Models In Vitro. Methods in Molecular Biology, vol 2767. Humana, New York, NY. https://doi.org/10.1007/7651_2023_486

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_486

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3685-5

  • Online ISBN: 978-1-0716-3686-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics