Skip to main content
Log in

Epigenetic Erasing and Pancreatic Differentiation of Dermal Fibroblasts into Insulin-Producing Cells are Boosted by the Use of Low-Stiffness Substrate

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Several studies have demonstrated the possibility to revert differentiation process, reactivating hypermethylated genes and facilitating cell transition to a different lineage. Beside the epigenetic mechanisms driving cell conversion processes, growing evidences highlight the importance of mechanical forces in supporting cell plasticity and boosting differentiation. Here, we describe epigenetic erasing and conversion of dermal fibroblasts into insulin-producing cells (EpiCC), and demonstrate that the use of a low-stiffness substrate positively influences these processes. Our results show a higher expression of pluripotency genes and a significant bigger decrease of DNA methylation levels in 5-azacytidine (5-aza-CR) treated cells plated on soft matrix, compared to those cultured on plastic dishes. Furthermore, the use of low-stiffness also induces a significant increased up-regulation of ten-eleven translocation 2 (Tet2) and histone acetyltransferase 1 (Hat1) genes, and more decreased histone deacetylase enzyme1 (Hdac1) transcription levels. The soft substrate also encourages morphological changes, actin cytoskeleton re-organization, and the activation of the Hippo signaling pathway, leading to yes-associated protein (YAP) phosphorylation and its cytoplasmic translocation. Altogether, this results in increased epigenetic conversion efficiency and in EpiCC acquisition of a mono-hormonal phenotype. Our findings indicate that mechano-transduction related responsed influence cell plasticity induced by 5-aza-CR and improve fibroblast differentiation toward the pancreatic lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6–21.

    Article  CAS  Google Scholar 

  2. Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.

    Article  PubMed  CAS  Google Scholar 

  3. Taylor, S. M., Constantinides, P. A., & Jones, P. A. (1984). 5-Azacytidine, DNA methylation, and differentiation. Current Topics in Microbiology and Immunology, 108, 115–127.

    PubMed  CAS  Google Scholar 

  4. Pennarossa, G., Maffei, S., Campagnol, M., Tarantini, L., Gandolfi, F., & Brevini, T. A. (2013). Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proceedings of the National Academy of Sciences of the United State of America, 110(22), 8948–8953.

    Article  Google Scholar 

  5. Pennarossa, G., Maffei, S., Campagnol, M., Rahman, M. M., Brevini, T. A., & Gandolfi, F. (2014). Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Reviews, 10(1), 31–43.

    Article  CAS  Google Scholar 

  6. Brevini, T. A., Pennarossa, G., Rahman, M. M., et al. (2014). Morphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and Addressed Toward Muscular Differentiation. Stem Cell Reviews.

  7. Mirakhori, F., Zeynali, B., Kiani, S., & Baharvand, H. (2015). Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell Journal, 17(1), 153–158.

    PubMed  PubMed Central  Google Scholar 

  8. Tan, S. J., Fang, J. Y., Wu, Y., Yang, Z., Liang, G., & Han, B. (2015). Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation. Scientific Reports, 5, 16333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Brevini, T. A., Pennarossa, G., Acocella, F., Brizzola, S., Zenobi, A., & Gandolfi, F. (2016). Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. The Veterinary Journal.

  10. Chandrakanthan, V., Yeola, A., Kwan, J. C., et al. (2016). PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of the United State of America.

  11. Manzoni, E. F., Pennarossa, G., deEguileor, M., Tettamanti, G., Gandolfi, F., & Brevini, T. A. (2016). 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Scientific Reports, 6, 37017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wakao, S., Kitada, M., Kuroda, Y., et al. (2011). Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proceedings of the National Academy of Sciences of the United State of America, 108(24), 9875–9880.

    Article  Google Scholar 

  13. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., Kucia, M., & Shin, D. M. (2017). A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells. Circulation Research, 120(1), 166–178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bhartiya, D. (2017). Do Adult Somatic Cells Undergo Reprogramming or Endogenous Pluripotent Stem Cells get Activated to Account for Plasticity, Regeneration and Cancer Initiation? Stem Cell Reviews, 13(5), 699–701.

    Article  Google Scholar 

  15. Christman, J. K. (2002). 5-Azacytidine and 5-aza-2[prime]-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483–5495.

    Article  PubMed  CAS  Google Scholar 

  16. Stresemann, C., & Lyko, F. (2008). Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer, 123(1), 8–13.

    Article  PubMed  CAS  Google Scholar 

  17. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    Article  PubMed  CAS  Google Scholar 

  18. Evans, N. D., Minelli, C., Gentleman, E., et al. (2009). Substrate stiffness affects early differentiation events in embryonic stem cells. European Cell & Materials, 18, 1–13; discussion 13–14.

  19. Huebsch, N., Arany, P. R., Mao, A. S., et al. (2010). Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Materials, 9(6), 518–526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., et al. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329(5995), 1078–1081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nam, J., Johnson, J., Lannutti, J. J., & Agarwal, S. (2011). Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomaterialia, 7(4), 1516–1524.

    Article  PubMed  CAS  Google Scholar 

  22. Viale-Bouroncle, S., Vollner, F., Mohl, C., et al. (2011). Soft matrix supports osteogenic differentiation of human dental follicle cells. Biochemical and Biophysical Research Communications, 410(3), 587–592.

    Article  PubMed  CAS  Google Scholar 

  23. Schellenberg, A., Joussen, S., Moser, K., et al. (2014). Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells. Biomaterials, 35(24), 6351–6358.

    Article  PubMed  CAS  Google Scholar 

  24. Kshitiz, Park, J., Kim, P., et al. (2012). Control of stem cell fate and function by engineering physical microenvironments. Integrative Biology (Camb), 4(9), 1008–1018.

    Article  CAS  Google Scholar 

  25. Merkwitz, C., Blaschuk, O. W., Schulz, A., et al. (2013). The ductal origin of structural and functional heterogeneity between pancreatic islets. Progress in Histochemistry and Cytochemistry, 48(3), 103–140.

    Article  PubMed  Google Scholar 

  26. Davis, N. E., Beenken-Rothkopf, L. N., Mirsoian, A., et al. (2012). Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials, 33(28), 6691–6697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pelham, R. J. Jr., & Wang, Y. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United State of America, 94(25), 13661–13665.

    Article  CAS  Google Scholar 

  28. Brevini, T. A., Pennarossa, G., Maffei, S., et al. (2012). Centrosome amplification and chromosomal instability in human and animal parthenogenetic cell lines. Stem Cell Reviews, 8(4), 1076–1087.

    Article  CAS  Google Scholar 

  29. Shi, Y., Hou, L., Tang, F., et al. (2005). Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells, 23(5), 656–662.

    Article  PubMed  CAS  Google Scholar 

  30. Nardone, G., Oliver-De La Cruz, J., Vrbsky, J., et al. (2017). YAP regulates cell mechanics by controlling focal adhesion assembly. Nature Communications, 8, 15321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tahiliani, M., Koh, K. P., Shen, Y., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930–935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ito, S., D./‘Alessio, Taranova, A. C., Hong, O. V., Sowers, K., L.C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133.

  33. Zhu, G., Li, Y., Zhu, F., et al. (2014). Coordination of engineered factors with TET1/2 promotes early-stage epigenetic modification during somatic cell reprogramming. Stem Cell Reports, 2(3), 253–261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hemberger, M., Dean, W., & Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nature Reviews Molecular Cell Biology, 10(8), 526–537.

    Article  PubMed  CAS  Google Scholar 

  35. Higuchi, S., Watanabe, T. M., Kawauchi, K., Ichimura, T., & Fujita, H. (2014). Culturing of mouse and human cells on soft substrates promote the expression of stem cell markers. Journal of Bioscience and Bioengineering, 117(6), 749–755.

    Article  PubMed  CAS  Google Scholar 

  36. Chowdhury, F., Li, Y., Poh, Y. C., Yokohama-Tamaki, T., Wang, N., & Tanaka, T. S. (2010). Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE, 5(12), e15655.

  37. Walcott, S., & Sun, S. X. (2010). A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proceedings of the National Academy of Sciences of the United State of America, 107(17), 7757–7762.

    Article  Google Scholar 

  38. Dupont, S., Morsut, L., Aragona, M., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474(7350), 179–183.

    Article  PubMed  CAS  Google Scholar 

  39. Wada, K., Itoga, K., Okano, T., Yonemura, S., & Sasaki, H. (2011). Hippo pathway regulation by cell morphology and stress fibers. Development, 138(18), 3907–3914.

    Article  PubMed  CAS  Google Scholar 

  40. Zhao, B., Li, L., Wang, L., Wang, C. Y., Yu, J., & Guan, K. L. (2012). Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes & Development, 26(1), 54–68.

    Article  CAS  Google Scholar 

  41. Halder, G., Dupont, S., & Piccolo, S. (2012). Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature Reviews Molecular Cell Biology, 13(9), 591–600.

    Article  PubMed  CAS  Google Scholar 

  42. Lian, I., Kim, J., Okazawa, H., et al. (2010). The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes & Development, 24(11), 1106–1118.

    Article  CAS  Google Scholar 

  43. Young, R. A. (2011). Control of the embryonic stem cell state. Cell, 144(6), 940–954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Beyer, T. A., Weiss, A., Khomchuk, Y., et al. (2013). Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells. Cell Reports, 5(6), 1611–1624.

    Article  PubMed  CAS  Google Scholar 

  45. Varelas, X. (2014). The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development, 141(8), 1614–1626.

    Article  PubMed  CAS  Google Scholar 

  46. Candiello, J., Singh, S. S., Task, K., Kumta, P. N., & Banerjee, I. (2013). Early differentiation patterning of mouse embryonic stem cells in response to variations in alginate substrate stiffness. Journal of Biological Engineering, 7(1), 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Richardson, T., Kumta, P. N., & Banerjee, I. (2014). Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Engineering Part A, 20(23–24), 3198–3211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jaramillo, M., Singh, S. S., Velankar, S., Kumta, P. N., & Banerjee, I. (2015). Inducing endoderm differentiation by modulating mechanical properties of soft substrates. Journal of Tissue Engineering and Regenerative Medicine, 9(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  49. Polak, M., Bouchareb-Banaei, L., Scharfmann, R., & Czernichow, P. (2000). Early pattern of differentiation in the human pancreas. Diabetes, 49(2), 225–232.

    Article  PubMed  CAS  Google Scholar 

  50. Piper, K., Brickwood, S., Turnpenny, L. W., et al. (2004). Beta cell differentiation during early human pancreas development. The Journal of Endocrinology, 181(1), 11–23.

    Article  PubMed  CAS  Google Scholar 

  51. Brevini, T. A., Pennarossa, G., Maffei, S., Zenobi, A., & Gandolfi, F. (2016). Epigenetic Conversion as a Safe and Simple Method to Obtain Insulin-secreting Cells from Adult Skin Fibroblasts. Journal of Visualized Experiments, (109).

Download references

Acknowledgements

This work was funded by Carraresi Foundation, by European Foundation for the Study of Diabetes (EFSD) and by Ricerca Corrente at Centro Cardiologico Monzino, IRCCS. The Laboratory of Biomedical Embryology is member of the COST Action CA16119 In vitro 3-D total cell guidance and fitness (CellFit), the COST Action BM1308 Sharing advances on large animal models (SALAAM) and the COST Action CM1406 Epigenetic Chemical Biology (EPICHEM). The Authors are indebted with Drs Loredana Casalis and Denis Scaini at ELETTRA-Sincrotrone for helping with assessment of the substrates compliance with AFM-assisted nano-indentation methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana A. L. Brevini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennarossa, G., Santoro, R., Manzoni, E.F.M. et al. Epigenetic Erasing and Pancreatic Differentiation of Dermal Fibroblasts into Insulin-Producing Cells are Boosted by the Use of Low-Stiffness Substrate. Stem Cell Rev and Rep 14, 398–411 (2018). https://doi.org/10.1007/s12015-017-9799-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9799-0

Keywords

Navigation